QSAR Studies of Nitric Oxide Synthase Inhibitors.

Curr Top Med Chem

Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.

Published: December 2023

Background: Nitric oxide is a free radical bioregulator controlling homeostasis, vasodilation, and inhibition of platelet aggregation, significantly implicated in the nervous and immune system functionality. In vivo it is produced by nitric oxide synthases (NOSs).

Objective: Overproduction of nitric oxide is linked to several inflammatory, immunological, and neurodegenerative diseases and for that, various compounds have been synthesized as inhibitors of NOSs. In this review, the QSAR analyses were summarized in a variety of compounds as potent inhibitors of NOSs, and the models derived through 1D, 2D and 3D QSAR analyses.

Conclusion: Ten groups of various NOS inhibitors and 17 1D, 2D, and 3D QSAR models and analyses were presented and discussed. A lack of hydrophobic terms was noticed in most of the cases. Chemical substituents were selected considering the increase either of the hydrophilicity and/or of hydrophobicity, bulkiness supported steric interactions, and point to potent inhibitors. CMR (Calculated Molar Refractivity) a steric variable, with a negative sign, underlines the critical effects participating on (in) an active site on the enzymes. Indicator variables imply the influence of specific structural moieties. Electronic parameters were found to be significant.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0115680266251348231026045329DOI Listing

Publication Analysis

Top Keywords

nitric oxide
16
inhibitors noss
8
potent inhibitors
8
inhibitors
5
qsar
4
qsar studies
4
nitric
4
studies nitric
4
oxide
4
oxide synthase
4

Similar Publications

Sotatercept in pulmonary hypertension and beyond.

Eur J Clin Invest

January 2025

Department of Surgical, Medical and Molecular Pathology and Critical Area, Laboratory of Biochemistry, University of Pisa, Pisa, Italy.

Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2.

View Article and Find Full Text PDF

Brucellosis is a highly contagious zoonotic bacterial disease. It has considerable negative consequences on the animal production industry worldwide. The objective of this study was to investigate the genetic and molecular variations in Shami goat susceptible to Brucella infection.

View Article and Find Full Text PDF

Chemoprevention is one of the accessible strategies for preventing, delaying or reversing cancer processing utilizing chemical intervention of carcinogenesis. NAD(P)H quinone oxidoreductase 1 (NQO1) is a xenobiotic metabolizing cytosolic enzyme/protein with important functional properties towards oxidation stress, supporting its ability in detoxification/chemoprotective role. A set of 3,5-diylidene-4-piperidones (as curcumin mimics) bearing alkyl sulfonyl group were synthesized with potential NQO1 induction properties.

View Article and Find Full Text PDF

Characterizing Oxidative Stress induced by Aβ Oligomers and the Protective Role of Carnosine in Primary Mixed Glia Cultures.

Free Radic Biol Med

January 2025

Department of Drug and Health Sciences, University of Catania, Catania, Italy; Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy. Electronic address:

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and memory loss. A critical aspect of AD pathology is represented by oxidative stress, which significantly contributes to neuronal damage and death. Microglia and astrocytes, the primary glial cells in the brain, are crucial for managing oxidative stress and supporting neuronal function.

View Article and Find Full Text PDF

The interactive toxic effect of homocysteine and copper on cardiac microvascular endothelial cells during ischemia-reperfusion injury.

Chem Biol Interact

January 2025

Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi, PR China. Electronic address:

Hyperhomocysteinemia (HHcy) is associated with the development and progression of chronic cardiovascular diseases through the deleterious effects of high levels of homocysteine (Hcy) on the cardiovascular system. However, the exact mechanism of action of Hcy on the acute injury of the cardiovascular system following ischemia/reperfusion (I/R) remains unclear. The present study demonstrated that copper mobilization occurs during cardiac I/R, and the interactive toxic effect of Hcy and mobile Cu during cardiac I/R induces necroptosis of cardiac microvascular endothelial cells (CMECs) and thus enhances cardiac dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!