Summary: Thanks to recent advances in live cell imaging of biosensors, microscopy experiments can generate thousands of single-cell time-series. To identify sub-populations with distinct temporal behaviours that correspond to different cell fates, we developed Time Course Inspector (TCI)-a unique tool written in R/Shiny to combine time-series analysis with clustering. With TCI it is convenient to inspect time-series, plot different data views and remove outliers. TCI facilitates interactive exploration of various hierarchical clustering and cluster validation methods. We showcase TCI by analysing a single-cell signalling time-series dataset acquired using a fluorescent biosensor.
Availability And Implementation: https://github.com/pertzlab/shiny-timecourse-inspector.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btz846 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!