A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Movement of an imperiled esocid fish in an agricultural drain. | LitMetric

Movement of an imperiled esocid fish in an agricultural drain.

Mov Ecol

Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.

Published: December 2023

Animal movement is increasingly affected by human alterations to habitat and climate change. In wetland systems, widespread hydrologic alterations from agriculture have changed the shape, function, and stability of shallow streams and wetland habitats. These changes in habitat quality and quantity may be especially consequential for freshwater fishes such as Grass Pickerel (Esox americanus vermiculatus), a small predatory fish found in disjunct populations across southern Ontario and listed as Special Concern under Canada's Species at Risk Act. To characterize Grass Pickerel movement response to stream-channel alterations, Fisheries and Oceans Canada implemented a tracking study to monitor the movements of a Grass Pickerel population in an agricultural drain on the Niagara Peninsula (Ontario, Canada). From 2009 to 2013, 2007 Grass Pickerel were tagged and tracked in the 37.3 km Beaver Creek watershed using a combination of mark-recapture surveys and eight fully automated passive integrated transponder tag antennas. Most individuals moved within 500 m (i.e., stationary fish) while 16% of the fish moved > 500 m (i.e., mobile fish), with a maximum median movement distance of 1.89 km and a maximum movement distance of 13.5 km (a long-tail distribution). Most movements occurred near the largest confluence where only a few were long-distance upstream or downstream movements. Mobile fish were larger than their stationary counterparts. Grass Pickerel in sites with higher abundance had more mobile fish, implying potential density dependence. Our results highlight that, while a long-distance dispersal ability exists in extant Grass Pickerel populations, the current conditions of riverscapes may prevent these dispersals from occurring. For declining Grass Pickerel populations, limitations to their movement ecology may substantially increase the likelihood of local extirpations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10720151PMC
http://dx.doi.org/10.1186/s40462-023-00420-2DOI Listing

Publication Analysis

Top Keywords

grass pickerel
28
mobile fish
12
agricultural drain
8
movement distance
8
pickerel populations
8
fish
7
grass
7
pickerel
7
movement
6
movement imperiled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!