Background: Agar is used as a gelling agent that possesses a variety of biological properties; it consists of the polysaccharides agarose and porphyrin. In addition, the monomeric sugars generated after agar hydrolysis can be functionalized for use in biorefineries and biofuel production. The main objective of this study was to develop a sustainable agar hydrolysis process for bioethanol production using nanotechnology. Peroxidase-mimicking FeO-MNPs were applied for agar degradation to generate agar hydrolysate-soluble fractions amenable to Saccharomyces cerevisiae and Escherichia coli during fermentation.

Results: FeO-MNP-treated (FeO-MNPs, 1 g/L) agar exhibited 0.903 g/L of reducing sugar, which was 21-fold higher than that of the control (without FeO-MNP-treated). Approximately 0.0181% and 0.0042% of ethanol from 1% of agar was achieved using Saccharomyces cerevisiae and Escherichia coli, respectively, after process optimization. Furthermore, different analytical techniques (FTIR, SEM, TEM, EDS, XRD, and TGA) were applied to validate the efficiency of FeO-MNPs in agar degradation.

Conclusions: To the best of our knowledge, FeO-MNP-treated agar degradation for bioethanol production through process optimization is a simpler, easier, and novel method for commercialization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10720145PMC
http://dx.doi.org/10.1186/s13068-023-02441-wDOI Listing

Publication Analysis

Top Keywords

agar
10
agar hydrolysis
8
bioethanol production
8
agar degradation
8
saccharomyces cerevisiae
8
cerevisiae escherichia
8
escherichia coli
8
process optimization
8
catalytic hydrolysis
4
hydrolysis agar
4

Similar Publications

Nondestructive Mechanical Characterization of Bioengineered Tissues by Digital Holography.

ACS Biomater Sci Eng

January 2025

Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.

Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.

View Article and Find Full Text PDF

Microbiological and toxicity analyses of the synthetic polymer polyhexamethylene guanidine hydrochloride against endodontic microorganisms.

Braz J Microbiol

January 2025

Department of Postgraduate Program in Animal Science, University of Franca (UNIFRAN), Av. Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, SP, CEP 14.404-600, Brazil.

Failures in endodontic treatments are common due to microbial resistance in the pulp canal. The study evaluated the in vitro activity of polyhexamethylene guanidine hydrochloride (PHMGH) against endodontic strains, as well as in vivo toxicity. Using minimum inhibitory concentration and minimum bactericidal concentration techniques, PHMGH was effective against all microorganisms, even at low concentrations.

View Article and Find Full Text PDF

The interaction of protein with nanoparticles (NPs) of varying shape and/or size boosts our understanding on their bioreactivity and establishes a comprehensive database for use in medicine, diagnosis, and therapeutic applications. The present study explores the interaction between lysozyme (LYZ) and different NPs like graphene oxide (GO) and zinc oxide (ZnO) having various shapes (spherical, 's', and rod-shaped, 'r') and sizes, focusing on their binding dynamics and subsequent effects on both the protein fibrillation and antimicrobial properties. Typically, GO is considered a promising medium due to its apparent inhibition and prolonged lag phase for LYZ fibrillation.

View Article and Find Full Text PDF

China is a major producer of pears in the world and anthracnose is the most important disease, which may include fruit rot and early defoliation, and further brings enormous economic losses. In August of 2023, a sudden outbreak of anthracnose disease, ranging from 70% to 90% disease incidence, occurred on fruits of Pyrus pyrifolia (Burm.f.

View Article and Find Full Text PDF

One of the potential risk factors of recombinant adeno-associated virus (rAAV)-based gene therapy is insertional mutagenesis, which has been associated with the development of hepatocellular carcinoma (HCC) in rAAV-treated neonatal mice. The objective of this study was to investigate if well-established in vitro cell transformation assays (CTA) in mouse cell lines can detect AAV2 or AAVdj-mediated cell transformation. Since AAV integration at the Rian locus in neonatal mice has been implicated in AAV-mediated HCC, an rAAV vector specifically targeting the mouse Rian locus and an additional rAAV vector previously shown to cause HCC in neonatal mice were both tested for the induction of cell transformation in NIH3T3 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!