Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: In the last years, the classical pattern of diabetic kidney disease (DKD) has been partially overcome, because of the uncovering of a new DKD phenotype with significant renal dysfunction without presence of albuminuria: the non-albuminuric DKD (NA-DKD). To date, the cardiovascular risk associated with this phenotype is still debated. We investigated the cardiovascular risk and renal injury profile of NA-DKD subjects in comparison with other DKD phenotypes.
Methods: Pulse wave velocity (PWV), intima-media thickness, presence of carotid atherosclerotic plaque, renal resistive index (RRI), and a panel of urinary biomarkers of kidney injury were evaluated in 160 subjects with type 2 diabetes, stratified according to estimated glomerular filtration rate (eGFR) and urinary albumin to creatinine ratio (UACR) into four groups: controls (UACR < 30 mg/g and eGFR ≥ 60 mL/min/1.73 m), A-DKD (Albuminuric-DKD, UACR ≥ 30 mg/g and eGFR ≥ 60 mL/min/1.73 m), NA-DKD (UACR < 30 mg/g and eGFR < 60 mL/min/1.73 m), AL-DKD (Albuminuric and Low eGFR-DKD; UACR ≥ 30 mg/g and eGFR < 60 mL/min/1.73 m).
Results: Subjects with NA-DKD showed a higher PWV (11.83 ± 3.74 m/s vs. 10.24 ± 2.67 m/s, P = 0.045), RRI (0.76 ± 0.11 vs. 0.71 ± 0.09, P = 0.04), and prevalence of carotid atherosclerotic plaque (59% vs. 31%, P = 0.009) compared with controls. These characteristics were similar to those of subjects with AL-DKD, whereas the profile of A-DKD subjects was closer to controls. After multiple regression analyses, we found that RRI, that is in turn influenced by eGFR (β = - 0.01, P = 0.01), was one of the major determinants of PWV (β = 9.4, P = 0.02). Urinary TreFoil Factor 3, a marker of tubular damage, was higher in NA-DKD subjects vs. controls (1533.14 ± 878.31 ng/mL vs. 1253.84 ± 682.17 ng/mL, P = 0.047). Furthermore, after multiple regression analyses, we found that urinary osteopontin was independently associated with PWV (β = 2.6, P = 0.049) and RRI (β = 0.09, P = 0.006).
Conclusions: Our data showed a worse cardiovascular and renal injury profile in NA-DKD subjects. This finding emphasizes the central role of eGFR in the definition of cardiovascular risk profile of diabetic subjects together with albuminuria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10720121 | PMC |
http://dx.doi.org/10.1186/s12933-023-02065-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!