A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigating the impact of non-additive genetic effects in the estimation of variance components and genomic predictions for heat tolerance and performance traits in crossbred and purebred pig populations. | LitMetric

AI Article Synopsis

  • Non-additive genetic effects, though often overlooked, could enhance genomic breeding value accuracy and influence traits like heat tolerance and heterosis in livestock.
  • Including these effects in performance models for purebred pigs didn't significantly alter residual variance, but it did lead to lower estimates of additive genetic variance and some animal re-ranking across models.
  • For heat tolerance in crossbred sows, while most traits had minor non-additive variance, significant epistatic variances were found in panting scores and hair density, indicating their importance in total genetic variance.

Article Abstract

Background: Non-additive genetic effects are often ignored in livestock genetic evaluations. However, fitting them in the models could improve the accuracy of genomic breeding values. Furthermore, non-additive genetic effects contribute to heterosis, which could be optimized through mating designs. Traits related to fitness and adaptation, such as heat tolerance, tend to be more influenced by non-additive genetic effects. In this context, the primary objectives of this study were to estimate variance components and assess the predictive performance of genomic prediction of breeding values based on alternative models and two independent datasets, including performance records from a purebred pig population and heat tolerance indicators recorded in crossbred lactating sows.

Results: Including non-additive genetic effects when modelling performance traits in purebred pigs had no effect on the residual variance estimates for most of the traits, but lower additive genetic variances were observed, especially when additive-by-additive epistasis was included in the models. Furthermore, including non-additive genetic effects did not improve the prediction accuracy of genomic breeding values, but there was animal re-ranking across the models. For the heat tolerance indicators recorded in a crossbred population, most traits had small non-additive genetic variance with large standard error estimates. Nevertheless, panting score and hair density presented substantial additive-by-additive epistatic variance. Panting score had an epistatic variance estimate of 0.1379, which accounted for 82.22% of the total genetic variance. For hair density, the epistatic variance estimates ranged from 0.1745 to 0.1845, which represent 64.95-69.59% of the total genetic variance.

Conclusions: Including non-additive genetic effects in the models did not improve the accuracy of genomic breeding values for performance traits in purebred pigs, but there was substantial re-ranking of selection candidates depending on the model fitted. Except for panting score and hair density, low non-additive genetic variance estimates were observed for heat tolerance indicators in crossbred pigs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717470PMC
http://dx.doi.org/10.1186/s12863-023-01174-xDOI Listing

Publication Analysis

Top Keywords

non-additive genetic
36
genetic effects
28
heat tolerance
20
breeding values
16
genetic
13
performance traits
12
accuracy genomic
12
genomic breeding
12
tolerance indicators
12
including non-additive
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!