Cardiovascular diseases (CVDs) pose a significant burden on global health. Developing effective diagnostic, therapeutic, and prognostic indicators for CVDs is critical. This narrative review explores the role of select non-coding RNAs (ncRNAs) and provides an in-depth exploration of the roles of miRNAs, lncRNAs, and circRNAs in different aspects of CVDs, offering insights into their mechanisms and potential clinical implications. The review also sheds light on the diverse functions of ncRNAs, including their modulation of gene expression, epigenetic modifications, and signaling pathways. It comprehensively analyzes the interplay between ncRNAs and cardiovascular health, paving the way for potential novel interventions. Finally, the review provides insights into the methodologies used to investigate ncRNA-mediated gene regulation in CVDs, as well as the implications and challenges associated with translating ncRNA research into clinical applications. Considering the broader implications, this research opens avenues for interdisciplinary collaborations, enhancing our understanding of CVDs across scientific disciplines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12265-023-10469-4 | DOI Listing |
Oncotarget
January 2025
Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Recently, combination checkpoint therapy of cancer has been recognized as producing additive as opposed to synergistic benefit due in part to positively correlated effects. The potential for uncorrelated or negatively correlated therapies to produce true synergistic benefits has been noted. Whereas the inhibitory receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT have been collectively characterized as exhaustion receptors, another inhibitory receptor KLRG1 was historically characterized as a senescent receptor and received relatively little attention as a potential checkpoint inhibitor target.
View Article and Find Full Text PDFJ Food Sci
January 2025
Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
This study aimed to investigate the potential hypoglycemic mechanism of red ginseng acidic polysaccharides (RGAP) from the perspective of fatty acid (FA) regulation. A high-glucose/high-fat diet in conjunction with streptozotocin administration was employed to establish type 2 diabetes mellitus (T2DM) rat models, and their fecal FAs were detected using the liquid chromatography-mass spectrometry (LC-MS) method. RGAP treatment alleviated the polyphagia, polydipsia, weight loss, and hyperglycemia observed in T2DM rats.
View Article and Find Full Text PDFNeoplasma
December 2024
Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei, China.
Many lines of evidence suggest that circular RNAs (circRNAs) are closely associated with the occurrence and progression of colon cancer. The objective of this study was to investigate the regulatory effects and mechanisms of circ_0075829 on ferroptosis and immune escape in colon cancer. We utilized colon cancer cell lines and a xenograft mouse model to analyze the function of circ_0075829 in vitro and in vivo.
View Article and Find Full Text PDFNeoplasma
December 2024
Department of General Surgery/Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
Esophageal squamous cell carcinoma (ESCC) has high mortality. The role and regulatory mechanism of hsa_circ_0021727 (circ_0021727) in ESCC remain largely unknown. This study focused on the undiscovered impact of circ_0021727 on cell cycle progression, apoptosis, and angiogenesis of ESCC.
View Article and Find Full Text PDFNeoplasma
December 2024
Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!