Rationale: Methamphetamine (METH) exposure has toxicity in sperm epigenetic phenotype and increases the risk for developing addiction in their offspring. However, the underlying transgenerational mechanism remains unclear.
Objectives: The current study aims to investigate the profiles of sperm epigenetic modifications in male METH-exposed mice (F0) and medial prefrontal cortex (mPFC) transcriptome in their male first-generation offspring (F1).
Methods: METH-related male F0 and F1 mice model was established to investigate the effects of paternal METH exposure on reproductive functions and sperm DNA methylation in F0 and mPFC transcriptomic profile in F1. During adulthood, F1 was subjected to a conditioned place preference (CPP) test to evaluate sensitivity to METH. The gene levels were verified with qPCR.
Results: METH exposure obviously altered F0 sperms DNA methylated profile and male F1 mPFC transcriptomic profile, many of which being related to neuronal system and brain development. In METH-sired male F1, subthreshold dose of METH administration effectively elicited CPP, along with more mPFC activation. After qPCR verification, Sort1 and Shank2 were at higher levels in F0 sperm and F1 mPFC.
Conclusions: Our findings put new insights into paternal METH exposure-altered profiles of F0 sperm DNA methylation and male F1 mPFC transcriptomics. Several genes, such as Sort1 and Shank2, might be used as potential molecules for further research on the transgenerational vulnerability to drug addiction in offspring by paternal drug exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00213-023-06516-2 | DOI Listing |
Mol Neurobiol
December 2024
NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China.
Co-exposure to methamphetamine (METH) abuse and HIV infection exacerbates central nervous system damage. However, the underlying mechanisms of this process remain poorly understood. This study aims to explore the roles of neuronal autophagy in the synergistic damage to the central nervous system caused by METH and HIV proteins.
View Article and Find Full Text PDFExp Brain Res
November 2024
Division of Health and Applied Science Physiology Program, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand.
Methamphetamine (METH) has well-documented long-term effects on the brain, including increased psychomotor activity and behavioral sensitization. However, its immediate effects on the brain's reward system following acute exposure, which may contribute to the development of addiction, are less understood. This study aimed to investigate the effects of acute METH on brain oscillations in the nucleus accumbens of C57BL/6 mice.
View Article and Find Full Text PDFActa Neuropathol Commun
November 2024
Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
Chronic methamphetamine (METH) use, a prevalent psychostimulant, is known to impair attention, yet the cellular mechanisms driving these deficits remain poorly understood. Here, we employed a rat model of repeated passive METH injections and evaluated attentional performance using the 5-choice serial reaction time task (5-CSRTT). Using single-nucleus RNA sequencing, immunofluorescence and in situ hybridization, we characterized the response of neurons in the reticulotegmental nucleus (RtTg) to METH exposure.
View Article and Find Full Text PDFMetab Brain Dis
November 2024
School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China.
Chronic exposure to methamphetamine (METH) has been suggested to cause METH use disorder and severe cognitive impairment. Paeoniflorin (PF) is a monoterpenoid glycoside with various beneficial effects, including anti-inflammatory, antioxidant and antidepressant. The current study was designed to investigate the effect of PF (30 mg/kg, i.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
November 2024
Department of Pharmacology, Rush University Medical Center, 1735 W. Harrison Street Cohn Research Building Suite #424, Chicago, IL, 60612, USA.
Infection with human immunodeficiency virus (HIV) increases risk for maladies of the gut barrier, which promotes sustained systemic inflammation even in virally controlled patients. We previously revealed morphological disorganization of colon epithelial barrier proteins in HIV-1 transgenic (Tg) rats. The current study evaluated mechanisms that may underlie gut barrier pathology induced by toxic HIV-1 proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!