Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is a devastating immune-mediated disorder that has a detrimental effect on the citrus industry, with the distinguishing feature being an eruption of reactive oxygen species (ROS). This study explored the alterations in antioxidant enzyme activity, transcriptome, and RNA editing events of organelles in C. sinensis during CLas infection. Results indicated that there were fluctuations in the performance of antioxidant enzymes, such as ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POD), and superoxide dismutase (SOD), in plants affected by HLB. Transcriptome analysis revealed 3604 genes with altered expression patterns between CLas-infected and healthy samples, including those associated with photosynthesis, biotic interactions, and phytohormones. Samples infected with CLas showed a decrease in the expression of most genes associated with photosynthesis and gibberellin metabolism. It was discovered that RNA editing frequency and the expression level of various genes in the chloroplast and mitochondrion genomes were affected by CLas infection. Our findings provide insights into the inhibition of photosynthesis, gibberellin metabolism, and antioxidant enzymes during CLas infection in C. sinensis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00709-023-01911-0 | DOI Listing |
Microbiol Res
December 2024
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China. Electronic address:
The citrus disease Huanglongbing (HLB) in Asia and the US is caused by Candidatus Liberibacter asiaticus (CLas), which is primarily transmitted by Diaphorina citri, also known as Asian citrus psyllid in a persistent and propagative manner. However, the exact mechanisms underlying CLas circulation within D. citri remain largely unclear.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China.
Pest Manag Sci
November 2024
Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
Background: Huanglongbing (HLB) is a systemic disease of citrus caused by the bacterial pathogen Candidatus Liberibacter asiaticus (CLas) that limits citrus production worldwide. CLas is an obligate bacterial pathogen that multiplies in citrus trees and in the insect vector, the Asian citrus psyllid (ACP), Diaphorina citri Kuwayama. There is no cure for HLB currently and broad-spectrum antibiotics represent one possible therapeutic against disease symptoms.
View Article and Find Full Text PDFFront Plant Sci
November 2024
Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States.
The global citrus industry faces a great threat from Huanglongbing (HLB), a destructive disease caused by ' Liberibacter asiaticus' (Las) that induces significant economic losses without any known cure. Understanding how citrus plants defend against HLB, particularly at the early stages of infection, is crucial for developing long-term solutions. This study investigated the earliest metabolic responses of fresh citrus leaves to Las infection using untargeted metabolomics and machine learning models.
View Article and Find Full Text PDFPest Manag Sci
November 2024
Department of Entomology and Acarology, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, Brazil.
Background: Huanglongbing (HLB) is the primary and most destructive disease affecting citrus, caused by a pathogen transmitted by an insect vector, Diaphorina citri. There are no curative methods for the disease, and rapid and accurate methods are needed for early detection in the field, even before symptoms appear. These will facilitate the faster removal of infected trees, preventing the spread of the bacteria through commercial citrus orchards.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!