Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This research is aimed at development of 3D-printed sockets for an orthopaedic prosthesis using methods of pressure redistribution on the inner surface of the socket. Topological freedom provided by modern additive manufacturing allows optimization of the parameters of the socket to create an orthopaedic prosthesis with properties adapted to the needs of a particular patient. This paper proposes an approach to redistribute the pressure in the prosthesis by controlled reinforcement with continuous carbon rods to artificially create zones of higher and lower pressure to facilitate prosthetic wear. Numerical modelling is used for the pre-design of a unique internal architecture of the prosthesis, which can redistribute the pressure on the inner surface of the socket, thus relieving excessive pressure from sensitive soft-tissue zones. The influence of socket thickness, inclination angle of the rods and the elastic behaviour of the polymeric materials on the extent of pressure redistribution is investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2023.104075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!