A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel and ultrasensitive electrochemical immunosensor based on nanocellulose-TiCT@ZrO nano framework for the detection of ovalbumin. | LitMetric

A novel and ultrasensitive electrochemical immunosensor based on nanocellulose-TiCT@ZrO nano framework for the detection of ovalbumin.

Int J Biol Macromol

Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam. Electronic address:

Published: February 2024

A versatile and highly sensitive sensing platform based on nanocellulose/MXene/ZrO nano framework has been developed at the surface of a glassy carbon electrode (GCE) for detecting ovalbumin (Ova). To create this innovative nano framework, dialdehyde groups were introduced onto the surface of cellulose nanofibers (CNFs), which were then decorated with MXene nanosheets and nanostructured zirconia. Nanocellulose/MXene/ZrO2 nano framework was used as electrochemical mediator and immobilization environment that provided the large surface area and 197 % increment in the electrochemical signal which allowed the Ova detection in the femtomolar range. Ovalbumin antibody was immobilized on the surface of dialdehyde cellulose nanofiber through covalent bonding between amino groups of Ova and dialdehyde groups of CNFs. The assembly process of nano framework, anti-Ova, and Ova antigen were characterized using electrochemical approaches (CV and DPV). The fabricated immunosensor is further applied to DPV detection of Ova and it demonstrated a linear response to Ova antigen in the linear range of 0.01-1000 pg/mL. With optimal experimental conditions, the detection limit, quantification limit and sensitivity of Ova were found to be 1.1 fg/mL, 0.01 pg/mL and 0.1497 μA pg/mL cm, respectively. The fabricated immunosensor exhibited high selectivity, reproducibility, and interference resistance and achieved excellent recoveries in real food samples spiked with Ova, indicating its potential applicability in food safety monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128657DOI Listing

Publication Analysis

Top Keywords

nano framework
20
ova
8
dialdehyde groups
8
ova antigen
8
fabricated immunosensor
8
nano
5
framework
5
novel ultrasensitive
4
electrochemical
4
ultrasensitive electrochemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!