Background: Circular RNAs (circRNAs) are believed to regulate the progression of various cancers including colorectal cancer (CRC). However, the role and mechanism of circ_0124554 in regulating the sensitivity of CRC to radiation remain unknown.
Methods: The RNA levels of circ_0124554, LIM and SH3 protein 1 (LASP1), and methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit (METTL3) were detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blot. Cell proliferation, apoptosis, migration, and invasion were investigated by 5-Ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry analysis, and transwell assay, respectively. The sensitivity of CRC cells to radiation was analyzed by cell colony formation assay. Xenograft mouse model assay was conducted to disclose the role of circ_0001023 in the sensitivity of tumors to radiation in vivo. The binding relationships among circ_0124554, miR-1184 and LASP1 were confirmed by a dual-luciferase reporter assay. m6A RNA immunoprecipitation assay was performed to identify the association of METTL3 with circ_0124554.
Results: Circ_0124554 expression was upregulated in CRC tissues and cells in comparison with normal colorectal tissues and cells. Circ_0124554 knockdown inhibited proliferation, migration and invasion and promoted apoptosis and radiosensitivity of CRC cells. Moreover, circ_0124554 depletion inhibited tumor formation and improved radiosensitivity in vivo. MiR-1184 was identified as a target miRNA of circ_0124554 and targeted LASP1. Additionally, LASP1 overexpression rescued circ_0124554 knockdown-mediated effects in CRC cells. METTL3 mediated m6A methylation of circ_0124554. Further, circ_0124554 overexpression attenuated METTL3 depletion-induced effects in CRC cells.
Conclusion: m6A-modified circ_0124554 promoted CRC progression and radioresistance by inducing LASP1 expression through interaction with miR-1184.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prp.2023.154950 | DOI Listing |
World J Gastrointest Surg
January 2025
Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, Zhejiang Province, China.
Background: Unraveling the pathogenesis of colorectal cancer (CRC) can aid in developing prevention and treatment strategies. Aurora kinase A (AURKA) is a key participant in mitotic control and interacts with its co-activator, the targeting protein for Xklp2 (TPX2) microtubule nucleation factor. AURKA is associated with poor clinical outcomes and high risks of CRC recurrence.
View Article and Find Full Text PDFLife Med
October 2024
School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
Colorectal cancer (CRC), one of the most common tumors in the world, is generally proposed to be generated from intestinal stem cells (ISCs). Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5)-positive ISCs are located at the bottom of the crypt and harbor self-renewal and differentiation capacities, serving as the resource of all intestinal epithelial cells and CRC cells as well. Here we review recent progress in ISCs both in non-tumoral and tumoral contexts.
View Article and Find Full Text PDFOnco Targets Ther
January 2025
Tianjin Medical University, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tian Jin, People's Republic of China.
Objective: To explore the relationship and underlying mechanisms between vitamin D and CRC, offering valuable insights into the diagnosis and treatment of CRC.
Materials And Methods: Serum levels of 1,25(OH)D were measured using a double-antibody sandwich assay. Bioinformatics analysis identified vitamin D-related CRC genes, which were validated using HCT116 and HT29 cell lines.
Curr Med Chem
January 2025
Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting No. 42, Nanjing, 210009, China.
Background: Super-enhancer-associated long noncoding RNAs (SE-lncRNAs) play crucial roles in CRC pathogenesis.
Objective: RP11-803D5.4 and AC005592.
Cell Death Differ
January 2025
Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital (Yiwu), Zhejiang University School of Medicine, Hangzhou, 310058, China.
Cancer stem cells (CSCs) typically reside in perivascular niches, but whether endothelial cells of blood vessels influence the stemness of cancer cells remains poorly understood. This study revealed that endothelial cell-specific GLTSCR1 deletion promotes colorectal cancer (CRC) tumorigenesis and metastasis by increasing cancer cell stemness. Mechanistically, knocking down GLTSCR1 induces the transformation of endothelial cells into tip cells by regulating the expression of Neuropilin-1 (NRP1), thereby increasing the direct contact and interaction between endothelial cells and tumour cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!