A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting the cause of seizures using features extracted from interactions with a virtual agent. | LitMetric

Objective: A clinical decision tool for Transient Loss of Consciousness (TLOC) could reduce currently high misdiagnosis rates and waiting times for specialist assessments. Most clinical decision tools based on patient-reported symptom inventories only distinguish between two of the three most common causes of TLOC (epilepsy, functional /dissociative seizures, and syncope) or struggle with the particularly challenging differentiation between epilepsy and FDS. Based on previous research describing differences in spoken accounts of epileptic seizures and FDS seizures, this study explored the feasibility of predicting the cause of TLOC by combining the automated analysis of patient-reported symptoms and spoken TLOC descriptions.

Method: Participants completed an online web application that consisted of a 34-item medical history and symptom questionnaire (iPEP) and spoken interaction with a virtual agent (VA) that asked eight questions about the most recent experience of TLOC. Support Vector Machines (SVM) were trained using different combinations of features and nested leave-one-out cross validation. The iPEP provided a baseline performance. Inspired by previous qualitative research three spoken language based feature sets were designed to assess: (1) formulation effort, (2) the proportion of words from different semantic categories, and (3) verb, adverb, and adjective usage.

Results: 76 participants completed the application (Epilepsy = 24, FDS = 36, syncope = 16). Only 61 participants also completed the VA interaction (Epilepsy = 20, FDS = 29, syncope = 12). The iPEP model accurately predicted 65.8 % of all diagnoses, but the inclusion of the language features increased the accuracy to 85.5 % by improving the differential diagnosis between epilepsy and FDS.

Conclusion: These findings suggest that an automated analysis of TLOC descriptions collected using an online web application and VA could improve the accuracy of current clinical decisions tools for TLOC and facilitate clinical stratification processes (such as ensuring appropriate referral to cardiological versus neurological investigation and management pathways).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.seizure.2023.11.022DOI Listing

Publication Analysis

Top Keywords

participants completed
12
virtual agent
8
clinical decision
8
automated analysis
8
online web
8
web application
8
tloc
7
predicting seizures
4
seizures features
4
features extracted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!