Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Achieving efficient uranium adsorption from highly acidic wastewater is still considered challenging. Here, an inorganic-organic hybridized self-assembly material (rPFE-10) with redox activity was constructed by phytic acid (PA), ethylenediamine (EDA), and Fe(II) via a facile one-pot route, and further applied for U(VI) removal. In the static adsorption experiment, rPFE-10 achieved the maximum U(VI) adsorption capacity of 717.1 mg/g at the optimal pH of 3.5. It also performed preeminently in a highly acidic condition of pH = 1.0, with the highest adsorption capacity of 551.2 mg/g and an equilibrium time of 30 min. Moreover, rPFE-10 exhibited a pH-responsive adsorption selectivity for U(VI) and An-Ln (S) and S), which increased to 69 % and 94 % respectively as pH decreased from 3.0 to 1.0. Additionally, the spectral analysis revealed a reconstruction mechanism induced by multiple synergistic adsorption, in which U(VI) exchange with EDA and Fe and earned suitable coordination geometry and ligand environment to coordinate with PA (mainly P-OH), while partial U(VI) is reduced by Fe(II) in framework. This work not only highlights the facile strategy for enhanced U(VI) retention in highly acidic solution, but expands the potential application of supramolecular self-assembly material in treatment of nuclear wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.133227 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!