Adaptive-weighted deep multi-view clustering with uniform scale representation.

Neural Netw

College of Information Science and Technology, Hainan University, Haikou, 570208, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570208, China. Electronic address:

Published: March 2024

Multi-view clustering has attracted growing attention owing to its powerful capacity of multi-source information integration. Although numerous advanced methods have been proposed in past decades, most of them generally fail to distinguish the unequal importance of multiple views to the clustering task and overlook the scale uniformity of learned latent representation among different views, resulting in blurry physical meaning and suboptimal model performance. To address these issues, in this paper, we propose a joint learning framework, termed Adaptive-weighted deep Multi-view Clustering with Uniform scale representation (AMCU). Specifically, to achieve more reasonable multi-view fusion, we introduce an adaptive weighting strategy, which imposes simplex constraints on heterogeneous views for measuring their varying degrees of contribution to consensus prediction. Such a simple yet effective strategy shows its clear physical meaning for the multi-view clustering task. Furthermore, a novel regularizer is incorporated to learn multiple latent representations sharing approximately the same scale, so that the objective for calculating clustering loss cannot be sensitive to the views and thus the entire model training process can be guaranteed to be more stable as well. Through comprehensive experiments on eight popular real-world datasets, we demonstrate that our proposal performs better than several state-of-the-art single-view and multi-view competitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2023.11.066DOI Listing

Publication Analysis

Top Keywords

multi-view clustering
16
adaptive-weighted deep
8
deep multi-view
8
clustering uniform
8
uniform scale
8
scale representation
8
clustering task
8
physical meaning
8
multi-view
6
clustering
6

Similar Publications

Background: Mining functional gene modules from genomic data is an important step to detect gene members of pathways or other relations such as protein-protein interactions. This work explores the plausibility of detecting functional gene modules by factorizing gene-phenotype association matrix from the phenotype ontology data rather than the conventionally used gene expression data. Recently, the hierarchical structure of phenotype ontologies has not been sufficiently utilized in gene clustering while functionally related genes are consistently associated with phenotypes on the same path in phenotype ontologies.

View Article and Find Full Text PDF

Multi-view clustering has garnered significant attention due to its capacity to utilize information from multiple perspectives. The concept of anchor graph-based techniques was introduced to manage large-scale data better. However, current methods rely on K-means or uniform sampling to select anchors in the original space.

View Article and Find Full Text PDF

MFC-ACL: Multi-view fusion clustering with attentive contrastive learning.

Neural Netw

December 2024

College of Automation, Chongqing University of Posts and Telecommunications, Nan'an District, 400065, Chongqing, China. Electronic address:

Multi-view clustering can better handle high-dimensional data by combining information from multiple views, which is important in big data mining. However, the existing models which simply perform feature fusion after feature extraction for individual views, mostly fails to capture the holistic attribute information of multi-view data due to ignoring the significant disparities among views, which seriously affects the performance of multi-view clustering. In this paper, inspired by the attention mechanism, an approach called Multi-View Fusion Clustering with Attentive Contrastive Learning (MFC-ACL) is proposed to tackle these issues.

View Article and Find Full Text PDF

The rapid development of spatial transcriptomics (ST) technology has provided unprecedented opportunities to understand tissue relationships and functions within specific spatial contexts. Accurate identification of spatial domains is crucial for downstream spatial transcriptomics analysis. However, effectively combining gene expression data, histological images and spatial coordinate data to identify spatial domains remains a challenge.

View Article and Find Full Text PDF

Precise acquisition of potted plant traits has great theoretical significance and practical value for variety selection and guiding scientific cultivation practices. Although phenotypic analysis using two dimensional(2D) digital images is simple and efficient, leaf occlusion reduces the available phenotype information. To address the current challenge of acquiring sufficient non-destructive information from living potted plants, we proposed a three dimensional (3D) phenotyping pipeline that combines neural radiation field reconstruction with path analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!