A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tuning Structure and Excitonic Properties of 2D Ruddlesden-Popper Germanium, Tin, and Lead Iodide Perovskites via Interplay between Cations. | LitMetric

The compositional tunability of 2D metal halide perovskites enables exploration of diverse semiconducting materials with different structural features. However, rationally tuning the 2D perovskite structures to target physical properties for specific applications remains challenging, especially for lead-free perovskites. Here, we study the effect of the interplay of the B-site (Ge, Sn, and Pb), A-site (cesium, methylammonium, and formamidinium), and spacer cations on the structure and optical properties of a new series of 2D Ruddlesden-Popper perovskites using the previously unreported spacer cation 4-bromo-2-fluorobenzylammonium (4Br2FBZ). We report eight new crystal structures and study the consequence of varying the B-site (Pb, Sn, Ge) and dimension ( = 1, 2, vs 3D). Dimension strongly influences local distortion and structural symmetry, and the increased octahedral tilting and lone pair effects in Ge perovskites lead to a polar = 2 perovskite that exhibits second harmonic generation, (4Br2FBZ)(Cs)GeI. In contrast, the analogous Sn and Pb perovskites remain centrosymmetric, but the B-site metal influences the photoluminescence properties. The Pb perovskites exhibit broad, defect-mediated emission at low temperature, whereas the Sn perovskites show purely excitonic emission over the entire temperature range, but the carrier recombination dynamics depend on dimensionality and dark excitonic states. Wholistic understanding of these differences that arise based on cations and dimensionality can guide the rational materials design of 2D perovskites for targeting physical properties for optoelectronic applications based on the interplay of cations and the connectivity of the inorganic framework.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c09793DOI Listing

Publication Analysis

Top Keywords

perovskites
9
interplay cations
8
physical properties
8
properties
5
tuning structure
4
structure excitonic
4
excitonic properties
4
properties ruddlesden-popper
4
ruddlesden-popper germanium
4
germanium tin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!