Circ_0027446 promotes malignant development of glioblastoma by interacting with miR-346 to up-regulate PGK1.

Metab Brain Dis

Inpatient Department District N22, Quanzhou First Hospital Affiliated to Fujian Medical University, Chendong Branch of Quanzhou 1st Hospital, No. 7, Row 11, Qian Yi Shan Zhuang Shi Wai Yuan, Fengze District, Quanzhou, 362000, China.

Published: March 2024

Circular RNAs (circRNAs) can play essential roles in tumor development, including glioblastoma (GBM). The current study was performed to explore the function and mechanism of circ_0027446 in GBM progression. Circ_0027446, microRNA-346 (miR-346) and Phosphoglycerate kinase 1 (PGK1) levels were detected using reverse transcription-quantitative polymerase chain reaction assay. Cell behaviors were examined using Cell Counting Kit-8 assay, colony formation assay, EdU assay, flow cytometry, and transwell assay. Glycolytic metabolism was analyzed by commercial kits. The protein level was determined via western blot. The target interaction was analyzed by dual-luciferase reporter assay. Circ_0027446 function in vivo was explored by tumor xenograft assay. Circ_0027446 expression was significantly up-regulated in GBM samples and cells. Circ_0027446 down-regulation suppressed proliferation, invasion, glycolytic metabolism and enhanced apoptosis of GBM cells. MiR-346 was a target of circ_0027446, and circ_0027446 promoted GBM progression by sponging miR-346. PGK1 acted as a target gene of miR-346, and circ_0027446 interacted with miR-346 to regulate PGK1 expression. Overexpression of miR-346 inhibited malignant behaviors of GBM cells through down-regulating PGK1. Circ_0027446 contributed to tumor growth in vivo via miR-346/PGK1 axis. The current evidences demonstrated that circ_0027446 facilitated malignant progression of GBM through binding to miR-346 to up-regulate PGK1.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11011-023-01332-1DOI Listing

Publication Analysis

Top Keywords

circ_0027446
9
mir-346
8
mir-346 up-regulate
8
up-regulate pgk1
8
glycolytic metabolism
8
gbm cells
8
gbm
7
pgk1
6
assay
6
circ_0027446 promotes
4

Similar Publications

Circ_0027446 promotes malignant development of glioblastoma by interacting with miR-346 to up-regulate PGK1.

Metab Brain Dis

March 2024

Inpatient Department District N22, Quanzhou First Hospital Affiliated to Fujian Medical University, Chendong Branch of Quanzhou 1st Hospital, No. 7, Row 11, Qian Yi Shan Zhuang Shi Wai Yuan, Fengze District, Quanzhou, 362000, China.

Circular RNAs (circRNAs) can play essential roles in tumor development, including glioblastoma (GBM). The current study was performed to explore the function and mechanism of circ_0027446 in GBM progression. Circ_0027446, microRNA-346 (miR-346) and Phosphoglycerate kinase 1 (PGK1) levels were detected using reverse transcription-quantitative polymerase chain reaction assay.

View Article and Find Full Text PDF

Background: Previous data have shown that circular RNA (circRNA) is a key regulator in papillary thyroid cancer (PTC). However, the role and the detailed mechanism of circ_0027446 in PTC progression have not been reported.

Methods: Circ_0027446, miR-129-5p, claudin 1 (CLDN1), C-myc and MMP2 expression were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), Western Blot or immunohistochemistry (IHC) assay.

View Article and Find Full Text PDF

Lung adenocarcinoma (LUAD) has high incidence and mortality rates worldwide; however, its detailed molecular pathology remains unclear. Although circRNAs have gradually been identified as molecules that are differentially expressed in tumors and play key roles in tumor progression, their role in LUAD is poorly understood. Through microarray analysis, we obtained the circRNA expression profile of LUAD and found that circ-HMGA2 (hsa_circ_0027446), a novel RNA, is highly expressed in LUAD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!