A new nanocomposite consisting of lanthanum ferrite nanoparticles (LaFeO NPs) integrated with carbon nanotubes (CNTs) was fabricated via facile sonochemical approach. The engineered nanocomposite was applied to simultaneously determine acetaminophen (ACP) and dopamine (DA) in a binary mixture. The LaFeO NPs@CNT probe possesses several advantages such as superior conductivity, large surface area, and more active sites, improving its electrocatalytic activity towards ACP and DA. Under optimized conditions, the anodic peak currents (Ipa) linearly increased with increasing concentration of ACP and DA in the range 0.069-210 µM and 0.15-210 µM, respectively. The sensitivity of LaFeO NPs@CNTs/glassy carbon electrode (GCE) for detecting ACP and DA is 7.456 and 5.980 μA·μM·cm, respectively. The detection limits (S/N = 3) for ACP and DA are 0.02 μM and 0.05 μM, respectively. Advantages of LaFeO NPs@CNTs/GCE for the detection of ACP and DA include wide linear ranges, low-detection limits, good selectivity, and long-term stability. The as-fabricated electrode was applied to determine ACP and DA in pharmaceutical formulations and human serum samples with recoveries ranging from 97.7 to 103.3% and an RSD that did not exceed 3.7%, confirming the suitability of the proposed sensor for the determination of ACP and DA in real samples. This study not only presents promising opportunities for enhancing the sensitivity and stability of electrochemical sensors used in the detection of bioanalytes but also significantly contributes to the progress of unique and comprehensive biochemical detection methodologies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-023-06110-5DOI Listing

Publication Analysis

Top Keywords

lanthanum ferrite
8
carbon nanotubes
8
acp
8
sonochemical synthesis
4
synthesis lanthanum
4
ferrite nanoparticle-decorated
4
nanoparticle-decorated carbon
4
nanotubes simultaneous
4
simultaneous electrochemical
4
electrochemical determination
4

Similar Publications

Unveiling the Mechanism of Exsolution of Silver Nanoparticles for Decorating Lanthanum Strontium Ferrite.

Inorg Chem

December 2024

Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, E-28668 Madrid, Spain.

Lanthanum strontium ferrite (LaSrAgFeO = 0; LSFO) and its silver-doped derivative (LaSrAgFeO = 0.05; LASFO) are synthesized using mild conditions by a sol-gel method. Both oxides present a perovskite-like structure with orthorhombic symmetry due to octahedral tilting; thus, the incorporation of silver in the A-site does not significantly modify the perovskite structure.

View Article and Find Full Text PDF

Formaldehyde (HCHO), a ubiquitous volatile organic compound and recognized human carcinogen, is extensively used in industrial applications such as resin and adhesive production. Even minimal exposure to HCHO can induce serious health effects, including respiratory distress and dermal irritation. Thus, the advancement of highly sensitive and selective sensors for HCHO detection is imperative for safeguarding environmental and indoor air quality.

View Article and Find Full Text PDF

Grain boundary (GB) mass transport, and chemistry exert a pronounced influence on both the performance and stability of electrodes for solid oxide electrochemical cells. Lanthanum strontium cobalt ferrite (LSCF6428) is applied as a model mixed ionic and electronic conducting (MIEC) perovskite oxide. The cation-vacancy distribution at the GBs is studied at both single and multi-grain scales using high-resolution characterization techniques and computational approaches.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on synthesizing CoZnLaFeO spinel ferrites through the sol-gel auto-combustion method, confirming their cubic structure via XRD analysis.
  • Crystallite sizes ranged from 17.5 nm to 54.52 nm, while the bandgap decreased from 2.0 eV to 1.68 eV with increased La doping, indicating potential changes in electronic properties.
  • Magnetic measurements showed a reduction in magnetization and an increase in coercivity with higher doping levels, suggesting these materials could be useful for microwave and energy storage applications.
View Article and Find Full Text PDF

The lanthanum ferrite perovskite (LaFO) was synthesized using a citric combustion route and then modified with a porous graphitic nitride nanosheet the wet impregnation-assisted ultrasonic method to produce La.FO@PgNS. Various techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet diffuse reflectance spectroscopy (UV-DRS), and Tauc plot analysis were employed to confirm the functional moieties, crystallinity, phase change, morphology, composition, and bandgap of La.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!