APOE allelic variation is critical in brain aging and Alzheimer's disease (AD). The APOE2 allele associated with cognitive resilience and neuroprotection against AD remains understudied. We employed a multipronged approach to characterize the transition from middle to old age in mice with APOE2 allele, using behavioral assessments, image-derived morphometry and diffusion metrics, structural connectomics, and blood transcriptomics. We used sparse multiple canonical correlation analyses (SMCCA) for integrative modeling, and graph neural network predictions. Our results revealed brain sub-networks associated with biological traits, cognitive markers, and gene expression. The cingulate cortex emerged as a critical region, demonstrating age-associated atrophy and diffusion changes, with higher fractional anisotropy in males and middle-aged subjects. Somatosensory and olfactory regions were consistently highlighted, indicating age-related atrophy and sex differences. The hippocampus exhibited significant volumetric changes with age, with differences between males and females in CA3 and CA1 regions. SMCCA underscored changes in the cingulate cortex, somatosensory cortex, olfactory regions, and hippocampus in relation to cognition and blood-based gene expression. Our integrative modeling in aging APOE2 carriers revealed a central role for changes in gene pathways involved in localization and the negative regulation of cellular processes. Our results support an important role of the immune system and response to stress. This integrative approach offers novel insights into the complex interplay among brain connectivity, aging, and sex. Our study provides a foundation for understanding the impact of APOE2 allele on brain aging, the potential for detecting associated changes in blood markers, and revealing novel therapeutic intervention targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082910PMC
http://dx.doi.org/10.1007/s00429-023-02731-xDOI Listing

Publication Analysis

Top Keywords

apoe2 allele
16
blood transcriptomics
8
brain aging
8
integrative modeling
8
gene expression
8
cingulate cortex
8
olfactory regions
8
aging
5
apoe2
5
brain
5

Similar Publications

: Alzheimer's dementia is a progressive neurodegenerative disease that affects memory abilities due to genetic and environmental factors. A well-known gene that influences the risk of Alzheimer's disease is the apolipoprotein E (APOE) gene. The APOE gene is involved in the production of a protein that helps transport cholesterol and other types of fat in the bloodstream.

View Article and Find Full Text PDF

The apolipoprotein E ( ) ε4 allele is the strongest genetic risk factor for Alzheimer's disease (AD). ApoE is glycosylated with an O-linked Core-1 sialylated glycan at several sites, yet the impact and function of this glycosylation on AD biomarkers remains unclear. We examined apoE glycosylation in a cohort of cerebrospinal fluid (CSF, n=181) and plasma (n= 178) samples from the Alzheimer's Disease Neuroimaging Initiative (ADNI) stratified into 4 groups: cognitively normal (CN), Mild Cognitive Impairment (MCI), progressors and non-progressors based on delayed word recall performance over 4 years.

View Article and Find Full Text PDF

Unraveling APOE4's Role in Alzheimer's Disease: Pathologies and Therapeutic Strategies.

Curr Protein Pept Sci

December 2024

Department of Pharmaceutical Engineering & Technology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India.

Alzheimer's disease (AD), the most common kind of dementia worldwide, is characterized by elevated levels of the amyloid-β (Aβ) peptide and hyperphosphorylated tau protein in the neurons. The complexity of AD makes the development of treatments infamously challenging. Apolipoprotein E (APOE) genes's ɛ4 allele is one of the main genetic risk factors for AD.

View Article and Find Full Text PDF

Apolipoprotein E Induces Lipid Accumulation Through Dgat2 That Is Prevented with Time-Restricted Feeding in .

Genes (Basel)

October 2024

Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

Apolipoprotein E (ApoE) is the leading genetic risk factor for late-onset Alzheimer's disease (AD), which is the leading cause of dementia worldwide. Most people have two ApoE-ε3 (ApoE3) alleles, while ApoE-ε2 (ApoE2) is protective from AD, and ApoE-ε4 (ApoE4) confers AD risk. How these alleles modulate AD risk is not clearly defined, and ApoE's role in lipid metabolism is also not fully known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!