Background: There are few methods for accurately assessing the risk of total hip arthroplasty (THA) in patients with osteoarthritis. A novel and reliable method that could play a substantial role in research and clinical routine should be investigated. The purpose of the present study was to develop a deep-learning model that can reliably predict the risk of THA with use of radiographic images and clinical symptom data.

Methods: This retrospective, multicenter, case-control study assessed hip joints on weighted-bearing anteroposterior pelvic radiographs obtained from Osteoarthritis Initiative (OAI) participants. Participants who underwent THA were matched to controls according to age, sex, body mass index, and ethnicity. Cases and controls were uniformly split into training, validation, and testing data sets at proportions of 72% (n = 528), 14% (n = 104), and 14% (n = 104), respectively. Images and clinical symptom data were passed through a detection model and a deep convolutional neural network (DCNN) model to predict the probability of THA within 9 years as well as the most likely time period for THA (0 to 2 years, 3 to 5 years, 6 to 9 years). Model performance was assessed with use of the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity in the testing set.

Results: A total of 736 participants were evaluated, including 184 cases and 552 controls. The prediction model achieved an overall accuracy, sensitivity, and specificity of 91.35%, 92.59% and 86.96%, respectively, with an AUC of 0.944, for THA within 9 years. The AUC of the DCNN model for assessing the most likely time period was 0.907 for 0 to 2 years, 0.916 for 3 to 5 years, and 0.841 for 6 to 9 years. Gradient-weighted class activation mapping closely corresponded to regions affecting the prediction of the DCNN model.

Conclusions: The proposed DCNN model is a reliable and valid method to predict the probability of THA-within limitations. It could assist clinicians in patient counseling and decision-making regarding the timing of the intervention. In the future, by increasing the size of the data set, enhancing the ethnic and socioeconomic diversity of the participants, and improving the follow-up rate, the quality of the conclusions can be further improved.

Level Of Evidence: Prognostic Level III . See Instructions for Authors for a complete description of levels of evidence.

Download full-text PDF

Source
http://dx.doi.org/10.2106/JBJS.23.00549DOI Listing

Publication Analysis

Top Keywords

total hip
12
dcnn model
12
tha years
12
model
9
deep-learning model
8
model predict
8
hip replacement
8
images clinical
8
clinical symptom
8
14% 104
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!