Background: Alzheimer's disease (AD) is a severe, varied, and complex brain condition that gradually impairs memory and cognitive function. Epidemiological studies have shown that patients who have a history of long-term NSAID use have a decreased risk of developing AD. The objective of this study is to conduct the structural analysis of a novel ibuprofen prodrug and test its anti-Alzheimer's properties.
Methods: Computational and docking studies were conducted using AMBER 18 package. The studies were performed using aluminum chloride-induced experimental AD in rats. Adult Wistar rats of either sex were used and treated with aluminum chloride (32.5 mg/kg, p.o) and ibuprofen prodrug (50 mg/kg, p.o) daily for 30 days. The hole-board test and elevated plus maze were conducted on 10th, 20th and 30th day. Further, on 31st day, animals were euthanized and the brain tissue was used for histopathology. The results obtained were subjected to statistical analysis by one-way ANOVA and Dunnet's test, p < 0.05 was considered to indicate the significance.
Results: The structural configuration of the novel compound indicated the presence of several structures such as aliphatic, aromatic, and asymmetry in the compound. The geometrical analysis indicated that the ibuprofen conjugate has dreiding energy of 51.22 kcal/mol with a van der waals radius of 62.56 A. The Huckel analysis confirmed the presence of aromatic rings in the compound. The molecular docking studies suggested affinity towards beta-secretase and acetylcholinesterase, besides indicating that the compound has ideal characteristics for the oral route (Log P = 2.33), cellular absorption (TPSA = 95.50), and oral bioavailability (number of rotatable bonds = 10). The toxicity profile indicated devoid of major systemic toxicity with mild possibility of cytotoxicity. The analysis showed that the Ibu-prodrug significantly (P < 0.001) reversed the changes induced by aluminum chloride and restored histomorphological features in brain tissue.
Conclusion: The findings suggested that the ibuprofen conjugate might possess the potential to manage the complications of AD. The action appears to be mediated through inhibition of beta-secretase and acetylcholinesterase activities. More studies might aid in identifying a specific therapeutic intervention that is still lacking in the treatment of AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10711515 | PMC |
http://dx.doi.org/10.1016/j.jsps.2023.101888 | DOI Listing |
Molecules
December 2024
Science Institute, Chemistry Department, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland.
This report describes the asymmetric synthesis of a focused library of enantiopure structured triacylglycerols (TAGs) comprised of a single saturated fatty acid (C6, C8, C10, C12, C14 or C16), a pure bioactive n-3 polyunsaturated fatty acid (EPA or DHA) and a potent drug (ibuprofen or naproxen) intended as a novel type of prodrug. One of the terminal -1 or -3 positions of the glycerol backbone is occupied with a saturated fatty, the remaining one with a PUFA, and the drug entity is present in the -2 position. This was accomplished by a six-step chemoenzymatic approach starting from enantiopure ()- and ()-solketals.
View Article and Find Full Text PDFPharm Res
August 2024
Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Via Mancinelli 7, 20131, Milano, Italy.
Objective: The development of an efficient, multifunctional drug delivery system overcoming different obstacles generally associated with drug formulations, including the poor accumulation of the active principle in the target site and its sustained release for prolonged time.
Methods: Our study proposes the development of a fluorinated poly(amidoamine) (PAMAM) carrier prodrug combining drug release boosted in alkaline environments with a possible implementation in F MRI applications. In particular, we functionalized the terminal primary amines of PAMAM G2 and G4 through an ad hoc designed fluorinated ibuprofen-arginine Michael acceptor to obtain multifunctional ibuprofen-PAMAM-Arg conjugates.
Int Immunopharmacol
July 2024
Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
Systemic sclerosis (SSc) is a devastating autoimmune illness with a wide range of clinical symptoms, including vascular abnormalities, inflammation, and persistent and progressive fibrosis. The disease's complicated pathophysiology makes it difficult to develop effective therapies, necessitating research into novel therapeutic options. Molecular hybridization is a strategy that can be used to develop new drugs that act on two or multiple targets and represents an interesting option to be explored for the treatment of complex diseases.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2024
Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036, Rende, Italy.
Human serum albumin (HSA) is the most abundant plasma protein of the circulatory system. It is a multidomain, multifunctional protein that, combining diverse affinities and wide specificity, binds, stores, and transports a variety of biological compounds, pharmacores, and fatty acids. HSA is finding increasing uses in drug-delivery due to its ability to carry functionalized ligands and prodrugs.
View Article and Find Full Text PDFSaudi Pharm J
January 2024
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
Background: Alzheimer's disease (AD) is a severe, varied, and complex brain condition that gradually impairs memory and cognitive function. Epidemiological studies have shown that patients who have a history of long-term NSAID use have a decreased risk of developing AD. The objective of this study is to conduct the structural analysis of a novel ibuprofen prodrug and test its anti-Alzheimer's properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!