Successful induction of antibodies in model organisms like mice depends strongly on antigen design and delivery. New antigen designs for immunization are helpful for developing future therapeutic monoclonal antibodies (mAbs). One of the gold standards to induce antibodies in mice is to express and purify the antigen for vaccination. This is especially time-consuming when mAbs are needed rapidly. We closed this gap and used the display technology tetraspanin anchor to develop a reliable immunization technique without the need to purify the antigen. This technique is able to speed up the immunization step enormously and we have demonstrated that we were able to induce antibodies against different proteins with a focus on the receptor-binding domain of SARS-CoV-2 and the extracellular loop of canine cluster of differentiation 20 displayed on the surface of human cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713279PMC
http://dx.doi.org/10.1093/biomethods/bpad030DOI Listing

Publication Analysis

Top Keywords

focus receptor-binding
8
receptor-binding domain
8
domain sars-cov-2
8
induce antibodies
8
purify antigen
8
tanchor fast
4
fast cost-effective
4
cost-effective cell-based
4
immunization
4
cell-based immunization
4

Similar Publications

Unraveling the impact of SARS-CoV-2 mutations on immunity: insights from innate immune recognition to antibody and T cell responses.

Front Immunol

December 2024

Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.

Throughout the COVID-19 pandemic, the emergence of new viral variants has challenged public health efforts, often evading antibody responses generated by infections and vaccinations. This immune escape has led to waves of breakthrough infections, raising questions about the efficacy and durability of immune protection. Here we focus on the impact of SARS-CoV-2 Delta and Omicron spike mutations on ACE-2 receptor binding, protein stability, and immune response evasion.

View Article and Find Full Text PDF

GABA (γ-aminobutyric acid) is a non-protein amino acid that occurs naturally in the human brain, animals, plants and microorganisms. It is primarily produced by the irreversible action of glutamic acid decarboxylase (GAD) on the α-decarboxylation of L-glutamic acid. As a major neurotransmitter in the brain, GABA plays a crucial role in behavior, cognition, and the body's stress response.

View Article and Find Full Text PDF

Reversing aberrant protein methylation levels is widely recognized as a key focus in cancer therapy. As an essential lysine methylation regulator, NSD2 (Nuclear receptor-binding SET Domain 2, also known as WHSC1/MMSET) regulates chromatin structural sparsity and DNA repair processes. Abnormal enhancement of NSD2 methylation activity (caused by NSD2 overexpression and point mutations) has been closely related to the initiation and development of various cancers and diseases.

View Article and Find Full Text PDF

Hybridization barriers in Brassicaceae play a pivotal role in governing reproductive success and maintaining speciation. In this perspective, we highlight recent advances revealing the intricate molecular mechanisms and the interplay among key players governing these barriers. Recent studies have shed light on the molecular mechanisms that govern hybridization barriers in Brassicaceae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!