The flavivirus NS5, a non-structural protein of Japanese Encephalitis Virus (JEV), a serious deadly human pathogen responsible for epidemics in South East Asia, consists of N-terminal methyl transferase (MTase) domain and RNA-dependent RNA polymerase (RdRp) is known for unique viral genome replication and cap formation activity. S-adenosyl executes a crucial function in these viral activities. S-adenosyl derivatives are chosen as potential binders with the MTase domain of NS5 based on MM and docking studies. MM GBSA (Generalized Born Surface Area) simulation were performed to evaluate the binding energy, following the 100 nanosecond (ns) production MD simulation in the periodic boundary condition (PBC) for the selected docked ligands with NS5. Quasi-harmonic entropy of the ligands was also calculated with semi-empirical calculations at the PM3/PM6 level supporting docking and MM-GBSA results. The residue-wise decomposition energy reveals that the key hydrophobic residues Gly 81, Phe 133, and Ile 147 in the RdRp-MTase interface, indicate the biological relevance. These residues act as the key residue stabilizer, binding vigorously with S-Adenosyl derivatives in the vicinity of the interface between the MTase domain and RdRp. This paves the way for the other potential drug as an inhibitor for the enzymatic activity of the NS5.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10712561 | PMC |
http://dx.doi.org/10.3389/fchem.2023.1258764 | DOI Listing |
bioRxiv
December 2024
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
SARS coronavirus 2 (SARS-CoV-2) non-structural protein 14 (Nsp14) possesses an N-terminal exonuclease (ExoN) domain that provides a proofreading function for the viral RNA-dependent RNA polymerase and a C-terminal N7-methyltransferase (N7-MTase) domain that methylates viral mRNA caps. Nsp14 also modulates host functions. This includes the activation of NF-κB and downregulation of interferon alpha/beta receptor 1 (IFNAR1).
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA.
The dengue virus (DENV) NS5 protein plays a central role in dengue viral RNA synthesis which makes it an attractive target for antiviral drug development. DENV NS5 is known to interact with the stem-loop A (SLA) promoter at the 5'-untranslated region (5'-UTR) of the viral genome as a molecular recognition signature for the initiation of negative strand synthesis at the 3' end of the viral genome. However, the conformational dynamics involved in these interactions are yet to be fully elucidated.
View Article and Find Full Text PDFBiochemistry
October 2024
Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
5-Methyluridine (mU) rRNA modifications frequently occur at U747 and U1939 ( numbering) in domains II and IV of the 23S rRNA in Gram-negative bacteria, with the help of -adenosyl-l-methionine (SAM)-dependent rRNA methyltransferases (MTases), RlmC and RlmD, respectively. In contrast, Gram-positive bacteria utilize a single SAM-dependent rRNA MTase, RlmCD, to modify both corresponding sites. Notably, certain archaea, specifically within the group, have been found to possess two genes encoding SAM-dependent archaeal (tRNA and rRNA) mU (ArmU) MTases.
View Article and Find Full Text PDFF1000Res
August 2024
College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
Background: The Zika virus (ZIKV) infection has emerged as a global health threat. The causal reasoning is that Zika infection is linked to the development of microcephaly in newborns and Guillain-Barré syndrome in adults. With no clinically approved antiviral treatment for ZIKV, the need for the development of potential inhibitors against the virus is essential.
View Article and Find Full Text PDFNucleic Acids Res
September 2024
Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA.
Non-segmented negative-strand (NNS) RNA viruses, such as rabies, Nipah and Ebola, produce 5'-capped and 3'-polyadenylated mRNAs resembling higher eukaryotic mRNAs. Here, we developed a transcription elongation-coupled pre-mRNA capping system for vesicular stomatitis virus (VSV, a prototypic NNS RNA virus). Using this system, we demonstrate that the single-polypeptide RNA-dependent RNA polymerase (RdRp) large protein (L) catalyzes all pre-mRNA modifications co-transcriptionally in the following order: (i) 5'-capping (polyribonucleotidylation of GDP) to form a GpppA cap core structure, (ii) 2'-O-methylation of GpppA into GpppAm, (iii) guanine-N7-methylation of GpppAm into m7GpppAm (cap 1), (iv) 3'-polyadenylation to yield a poly(A) tail.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!