In this study, we prepared porous Au-Ag alloy nanoparticle arrays with hydrophobic surfaces through the polystyrene colloidal crystal template combined with the chemical etching method to realize rapid SERS detection for biochemical molecules. In the preparation process, the pore size of Au-Ag alloy nanoparticles could be adjusted by changing the deposition time of the Ag element. Furthermore, after depositing the Au film on the surface of the porous nanoparticle arrays, their surface changed from hydrophilic to hydrophobic. The hydrophobic surface can drive target molecules to locally aggregate. Meanwhile, the hydrophobic surface also possessed a large number of active "hot spots" due to the porous structure. For these reasons, the porous Au-Ag alloy nanoparticle arrays can enable rapid and trace SERS detection, which provide the material basis for the subsequent construction of the high-quality SERS substrate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10714672 | PMC |
http://dx.doi.org/10.1039/d3ra06284h | DOI Listing |
Phys Chem Chem Phys
January 2025
Theoretical Physics Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
Extensive research on ultrashort laser-induced melting of noble metals like Au, Ag and Cu is available. However, studies on laser energy deposition and thermal damage of their alloys, which are currently attracting interest for energy harvesting and storage devices, are limited. This study investigates the melting damage threshold (DT) of three intermetallic alloys of Au and Cu (AuCu, AuCu and AuCu) subjected to single-pulse femtosecond laser irradiation, comparing them with their constituent metals.
View Article and Find Full Text PDFSensors (Basel)
December 2024
State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China.
To avoid wear and tear of the slip ring due to electrical corrosion, the slip ring needs to undergo the running-in process under atmospheric conditions without current after assembly. To address the urgent demand for long-service capability space conductive slip rings in the aerospace field, the running-in behavior and failure mechanism between the AgCuNi alloy and Au-electroplated layer are investigated using a ball-on-disc tribometer in this paper. The results show that the transfer film composed of Au plays an important role in modifying the friction during the sliding process.
View Article and Find Full Text PDFTalanta
January 2025
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China. Electronic address:
The current surface-enhanced Raman scattering (SERS) substrates typically feature a single energy level, posing challenges in coordinating electromagnetic enhancement (EM) and chemical enhancement (CM), thereby limiting the sensitive detection of numerous crucial target molecules. In this study, novel aggregated nanorings (a-NRs) hybridizing Ag, Au and AgCl are constructed as SERS substrates. On one hand, the obtained a-NRs exhibit robust localized surface plasmon resonance absorption, whose wavelength can be tuned to match three commonly used laser wavelengths (532, 633 and 785 nm) to gain strong EM effect.
View Article and Find Full Text PDFSci Rep
January 2025
Photonics Research Centre, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
Two-dimensional (2D) hexagonal boron nitride (hBN) has garnered significant attention due to its exceptional thermal and chemical stability, excellent dielectric properties, and unique optical characteristics, making it widely used in deep ultraviolet (DUV) applications. However, the integration of hBN with plasmonic materials in the visible region (532 nm) has not been fully explored, particularly in terms of morphology regulation and size control of mono- and bimetallic nanoparticles (BMNPs) namely gold (Au), silver (Ag) and Au-Ag. A Schottky junction-based metal-semiconductor contact configuration is employed to achieve hot-carrier reflections on the metal side, enhancing the quantum efficiency of the photodetector.
View Article and Find Full Text PDFChemistry
December 2024
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
Metal nanoclusters (NCs) with dimensions of approximately 3 nm serve as a crucial link between metal-organic complexes and metal nanoparticles, garnering significant interest due to their distinctive molecule-like characteristics. These include well-defined molecular structures, clear HOMO-LUMO transitions, quantized charge, and robust luminescence emission. Atomically precise alloy NCs, in contrast to homometallic NCs, exhibit a wealth of structures and intriguing properties, with their novel attributes often intricately tied to the positions of alloyed elements within the structure, facilitating the exploration of structure-property relationships.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!