Remote sensing and modelling of land use/land cover (LULC) change is useful to reveal the extent and spatial patterns of landscape changes at various environments and scales. Predicting susceptibility to LULC change is crucial for policy formulation and land management. However, the use of machine learning (ML) for modelling LULC change is limited. This study modelled LULC change susceptibility in the Okavango basin using ML techniques. Areas with high LULC change susceptibility are termed priority management areas (PMAs) in this study. Trajectories of LULC change between 1996 and 2020 are derived from existing LULC change maps of the Okavango basin. Overlay analysis is then used to detect patches of LULC change transitions. Three LULC transitional categories are adopted for modelling PMAs, namely 1) from natural to anthropogenic classes (Category A); 2) from anthropogenic to natural classes (Category B); and 3) from natural to another natural class (Category C). An ensemble of ML algorithms is calibrated with categories of LULC change and social-ecological drivers of change to produce maps showing the susceptibility of LULC change in the basin. Thereafter, thresholding is done on probability maps of susceptibility to LULC change based on the maximum sum of sensitivity and specificity (max SSS) to delineate PMAs. Results for trajectories of LULC change indicate that anthropogenic activities (croplands, built-up areas, and barelands) generally expanded, displacing natural areas (wetlands, woodlands, water, and shrubland) from 1996 to 2020. Regarding PMAs, anthropogenic-related PMAs (Category A ∼34 560 km) covered a larger area compared to the natural ones (Categories B∼33 407 km) and (Categories C∼15 040 km). The findings of this study emphasize the value of ensemble ML modelling in identifying PMAs and guiding transboundary land use planning. Overall, this study highlights the role of anthropogenic activities in driving land use changes in Transboundary Drainage Basins (TDBs) and suggests a need to promote sustainable practices in predicted PMAs through comprehensive planning to ensure water availability in the Okavango basin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10711134PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e22762DOI Listing

Publication Analysis

Top Keywords

lulc change
48
okavango basin
16
change
14
lulc
13
susceptibility lulc
12
priority management
8
management areas
8
machine learning
8
change susceptibility
8
trajectories lulc
8

Similar Publications

Understanding land use/land cover (LULC) changes is crucial for informing policymakers and planners on the dynamics affecting environmental and resource management. Most past studies highlighted the significance of LULC changes and their driving forces in various locations. However, comprehensive analyses that combine the impact of land management technologies (LMTs) on LULC changes using GIS and remote sensing tools have not been widely addressed.

View Article and Find Full Text PDF

Changes in terrestrial ecosystem carbon storage (CS) affect the global carbon cycle, thereby influencing global climate change. Land use/land cover (LULC) shifts are key drivers of CS changes, making it crucial to predict their impact on CS for low-carbon development. Most studies model future LULC by adjusting change proportions, leading to overly subjective simulations.

View Article and Find Full Text PDF

Rapid urbanization in Lahore has dramatically transformed land use and land cover (LULC), significantly impacting the city's thermal environment and intensifying climate change and sustainable development challenges. This study aims to examine the changes in the urban landscape of Lahore and their impact on the Urban thermal environment between 1990 and 2020. The previous studies conducted on Lahore lack the application of Geospatial artificial intelligence (GeoAI) to quantify land use and land cover, which is successfully covered in this study.

View Article and Find Full Text PDF

Estimation of potential denitrification and its spatiotemporal dynamics in seasonally inundated geomorphic units of a large tropical river using satellite data.

Sci Total Environ

January 2025

Department of Water Resources and Ecosystems, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands; Department of Ecoscience, Freshwater Ecology, University of Aarhus, Aarhus, Denmark. Electronic address:

Article Synopsis
  • Denitrification in large tropical rivers plays a crucial role in nitrogen retention, but accurate measurements for seasonal and geomorphological comparisons are challenging.
  • Researchers tested a hypothesis linking potential denitrification rates (PDR) to soil and vegetation characteristics in various geomorphic units (GUs) along a section of the Padma River in Bangladesh.
  • They found significant relationships between PDR, vegetation cover, and soil moisture, using remote sensing data to model PDR across different seasons, concluding that certain GUs, particularly vegetation islands and bars, are key areas for denitrification.
View Article and Find Full Text PDF

Land use and land cover (LULC) changes are crucial in influencing regional climate patterns and environmental dynamics. However, the long-term impacts of these changes on climate variability in the Bilate River Basin remain poorly understood. This study examines the spatiotemporal changes in LULC and their influence on climate variability in the Bilate River Basin, Ethiopia, over the period from 1994 to 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!