AI Article Synopsis

  • Cardiac fibrosis leads to heart dysfunction due to excess extracellular matrix in the heart, and this review explores the potential of nanotechnology in treating it.
  • It examines the key molecular players involved in cardiac fibrosis, like Matrix Metalloproteinases and Transforming Growth Factor-beta, which could serve as targets for new nano-therapies.
  • The review also addresses the advancements in nanoparticle engineering for drug delivery, the challenges faced in developing these therapies, and the potential for them to improve clinical outcomes for patients.

Article Abstract

Cardiac fibrosis is the excessive accumulation of extracellular matrix components in the heart, leading to reduced cardiac functionality and heart failure. This review provides an overview of the therapeutic applications of nanotechnology for the treatment of cardiac fibrosis. We first delve into the fundamental pathophysiology of cardiac fibrosis, highlighting the key molecular players, including Matrix Metalloproteinases, Transforming Growth Factor-beta, and several growth factors, cytokines, and signaling molecules. Each target presents a unique opportunity to develop targeted nano-therapies. We then focus on recent advancements in nanotechnology and how nanoparticles can be engineered to deliver drugs or therapeutic genes. These advanced delivery approaches have shown significant potential to inhibit fibrosis-promoting factors, thereby mitigating the fibrotic response and potentially reversing disease progression. In addition, we discuss the challenges associated with developing and translating nanotechnology-based drug delivery systems, including ensuring biocompatibility, safety, and regulatory compliance. This review highlights how nanotechnology can bridge the gap between lab research and clinical practice for treating cardiac fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10712437PMC
http://dx.doi.org/10.1002/INMD.20230018DOI Listing

Publication Analysis

Top Keywords

cardiac fibrosis
20
treatment cardiac
8
cardiac
6
fibrosis
5
progress prospect
4
nanotechnology
4
prospect nanotechnology
4
nanotechnology cardiac
4
fibrosis treatment
4
fibrosis excessive
4

Similar Publications

Prognostic Implications of Cardiac Geometry in Cirrhosis: Findings From a Large Cohort.

Liver Int

February 2025

General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.

Background And Aims: Cirrhosis is characterised by hyperdynamic circulation, which contributes to cirrhotic cardiomyopathy (CCM). However, the expert consensus on CCM did not initially include cardiac structure because of scant evidence. Therefore, this study investigated the associations of cardiac chamber geometry with mortality and CCM.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: FDA-approved carbonic anhydrase inhibitors (CAIs) have been shown to attenuate Aβ pathology, neurodegeneration, and cerebrovascular dysfunction in models of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), suggesting a key role for CAs as a novel and previously unexplored target for AD therapy. Amyloid β accumulation severely impairs the cerebral neuro-signaling pathway with a progressive loss in neurotrophic factors (NTFs, i.e.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.

Background: Cardiovascular disease causes vascular dementia and contributes to most clinical dementia. This is embodied in the concept of vascular contributions to cognitive impairment and dementia (VCID). The potent endogenous peptide endothelin-1 (ET1) causes small artery vasoconstriction and fibrosis.

View Article and Find Full Text PDF

Objective: Heart failure (HF) causes structural and functional changes in the heart, with the pyroptosis-mediated inflammatory response as the core link in HF pathogenesis. E3 ubiquitin ligases participate in cardiovascular disease progression. Here, we explored the underlying molecular mechanisms of E3 ubiquitin ligase Smurf1 in governing HF.

View Article and Find Full Text PDF

Sympathoexcitation is a hallmark of heart failure, with sustained β-adrenergic receptor (βAR)-G protein signaling activation. βAR signaling is modulated by regulator of G protein signaling (RGS) proteins. Previously, we reported that Gα regulation by RGS2 or RGS5 is key to ventricular rhythm regulation, while the dual loss of both RGS proteins results in left ventricular (LV) dilatation and dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!