The structure and structural transitions of transcripts of cloned oligomeric viroid were studied in physico-chemical experiments and stability calculations. Transcripts of (+) and (-) polarity, from unit up to sixfold length, were synthesized from DNA clones of the potato spindle tuber viroid (PSTV) with the SP6 transcription system. Their structural properties were investigated by optical denaturation curves, high performance liquid chromatography (HPLC), electron microscopy, sedimentation-diffusion equilibrium and velocity sedimentation. Secondary structures of the RNAs and theoretical denaturation curves were calculated using an energy optimization program. The secondary structure of lowest free energy for unit length and oligomeric transcripts is a rod-like structure similar to that of the mature circular viroids. When this structure is used as a model for calculations, there is a large degree of agreement between the theoretical and the experimental denaturation curves. At high temperatures, however, (+) strand transcripts exhibited a transition which was more stable than expected from the calculations or than was known from curves of mature viroids. This transition arises from a rearrangement of the central conserved region of viroids to a helical region of 28 stable base pairs either intermolecularly leading to bimolecular complexes, or intramolecularly giving rise to a branched secondary structure. The rearrangement could be detected by electron microscopy, HPLC, and analytical ultracentrifugation. The helical region serves to divide up the oligomeric (+) strand into structural units which may be recognized by cleavage and ligation enzymes which process the oligomeric intermediates to circular mature viroids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC341324PMC
http://dx.doi.org/10.1093/nar/14.24.9613DOI Listing

Publication Analysis

Top Keywords

denaturation curves
12
transcripts cloned
8
cloned oligomeric
8
potato spindle
8
spindle tuber
8
tuber viroid
8
curves high
8
electron microscopy
8
secondary structure
8
mature viroids
8

Similar Publications

Knotted proteins have a unique topological feature with an open knot, and the physiological significance of these knots remains elusive. In addition, these proteins challenge our understanding of the protein folding process, and whether they retain their native state during unfolding/refolding cycles like other proteins is debated. Most folding studies on knotted proteins have been performed on 3 and 5 knots, monitoring the tryptophan fluorescence.

View Article and Find Full Text PDF

Yeast frataxin (Yfh1) is a small natural protein from yeast that has the unusual property of undergoing cold denaturation at temperatures above the freezing point of water when under conditions of low ionic strength. This peculiarity, together with remarkable resilience, allows the determination, for the whole protein as well as for individual residues, of the stability curve, that is the temperature dependence of the free energy difference between the unfolded and folded forms. The ease of measuring stability curves without the need to add denaturants or introduce destabilizing mutations makes this protein an ideal 'tool' for investigating the influence of many environmental factors on protein stability.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are intricate compounds that pose significant challenges in bioanalytical characterization. Therefore, multiple bioanalytical methods are required to comprehensively elucidate their pharmacokinetic (PK) profiles. In this study, we investigated DS001, an ADC consisting of a humanized monoclonal antibody (hRS7), a cleavable chemical linker, and the microtubule inhibitor monomethyl auristatin E (MMAE), with a drug-to-antibody ratio (DAR) of 8.

View Article and Find Full Text PDF

Ocimum gratissimum mediated synthesis of AgNPs - An in vitro analysis of anti-inflammatory and antimicrobial effects.

Med J Malaysia

January 2025

Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India.

Introduction: Silver nanoparticles (AgNPs) are effective against almost all kinds of pathogenic organisms. The green synthesis of AgNPs utilizing extracts from medicinal plants is being researched to examine the therapeutic advantages of AgNPs because the chemical production of AgNPs is more toxic. In this study, the stem extract of Ocimum Gratissimum (OG) also known as Karunthulasi or wild basil for green synthesis of AgNPs and evaluating their antiinflammatory and antimicrobial effects.

View Article and Find Full Text PDF

Standardized workflow for multiplexed charge detection mass spectrometry on orbitrap analyzers.

Nat Protoc

January 2025

Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.

Individual ion mass spectrometry (IMS) is the Orbitrap-based extension of the niche mass spectrometry technique known as charge detection mass spectrometry (CDMS). While traditional CDMS analysis is performed on in-house-built instruments such as the electrostatic linear ion trap, IMS extends CDMS analysis to Orbitrap analyzers, allowing charge detection analysis to be available to the scientific community at large. IMS simultaneously measures the mass-to-charge ratios (m/z) and charges (z) of hundreds to thousands of individual ions within one acquisition event, creating a spectral output directly into the mass domain without the need for further spectral deconvolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!