Immune-mediated inflammatory diseases (IMIDs) comprise a complex group of pathologies with diverse etiologies and clinical manifestations. In particular, omics technologies have remodeled our understanding of a set of IMIDs such as systemic autoimmune rheumatic diseases (SARDs), generating vast amounts of data on the genome, epigenome, transcriptome, proteome and metabolome of immune cells and SARDs patients. However, the integration of omics data to advance our knowledge of these diseases is challenging, requiring advanced bioinformatic tools. This review explores different multi-omic integrative tools for refining previous research, exploring the biological relevance of datasets within different contexts, or translating omics results into clinical advances. We also discuss relevant multi-omic studies in SARDs research and the potential of omics data from available repositories to complement ongoing investigation in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10714331PMC
http://dx.doi.org/10.1016/j.csbj.2023.11.045DOI Listing

Publication Analysis

Top Keywords

omics data
12
immune-mediated inflammatory
8
inflammatory diseases
8
bioinformatic tools
8
omics
5
holistic approach
4
approach understanding
4
understanding immune-mediated
4
diseases
4
diseases bioinformatic
4

Similar Publications

Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer that is notably associated with a high risk of lymph node metastasis, a major cause of cancer mortality. Current therapeutic options remain limited to surgery supplemented by radio- or chemotherapy; however, these interventions often result in high-grade toxicities. Distant metastasis significantly contributed to the poor prognosis and decreased survival rates.

View Article and Find Full Text PDF

Chromosome-level genome assembly and annotation of the gynogenetic large-scale loach (Paramisgurnus dabryanus).

Sci Data

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.

The large-scale loach (Paramisgurnus dabryanus; Cypriniformes: Cobitidae) is primarily distributed in East Asia. It is an important economic fish species characterized by fast growth, temperature-dependent sex determination and the ability to breathe air. Currently, molecular mechanism studies related to some aspects such as sex determination, toxicology, feed nutrition, growth and genetic evolution have been conducted.

View Article and Find Full Text PDF

Integration of various types of omics data is an important trend in contemporary molecular oncology. In this regard, high-throughput analysis of trace and essential elements in cancer biosamples is an emerging field that has not yet been sufficiently addressed. For the first time, we simultaneously obtained gene expression profiles (RNA sequencing) and essential and trace element profiles (inductively coupled plasma mass spectrometry) for a set of human cancer samples.

View Article and Find Full Text PDF

Lactylation: The Metabolic Accomplice Shaping Cancer's Response to Radiotherapy and Immunotherapy.

Ageing Res Rev

January 2025

Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China. Electronic address:

Protein lactylation, an emerging post-translational modification, is providing new insights into tumor biology and challenging our current understanding of cancer mechanisms. Our review illuminates the intricate roles of lactylation in carcinogenesis, tumor progression, and therapeutic responses, positioning it as a critical linchpin connecting metabolic reprogramming, epigenetic modulation, and treatment outcomes. We provide an in-depth analysis of lactylation's molecular mechanisms and its far-reaching impact on cell cycle regulation, immune evasion strategies, and therapeutic resistance within the complex tumor microenvironment.

View Article and Find Full Text PDF

Efficient Discovery of Robust Prognostic Biomarkers and Signatures in Solid Tumors.

Cancer Lett

January 2025

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China; International Academy of Phronesis Medicine (Guangdong), 510320, Guangdong, China. Electronic address:

Recent advancements in multi-omics and big-data technologies have facilitated the discovery of numerous cancer prognostic biomarkers and gene signatures. However, their clinical application remains limited due to poor reproducibility and insufficient independent validation. Despite the availability of high-quality datasets, achieving reliable biomarker identification across multiple cohorts continues to be a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!