Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Androgen receptor (AR) signaling have been frequently targeted for treating prostate cancer (PCa). Even though primarily patients receive a good therapeutic outcome by targeting AR signaling axis, eventually it emerges resistance by altering the genetic makeup of prostate cells. However, to develop an effective therapeutic regime, it is essential to recognize key genetic alterations in PCa. The most common genetic alterations that give rise to distinct androgen different differentiation states are gene fusion of TMPRSS2 with ETS family genes, deletion, or mutation of tumor suppressor and gene, amplification or splicing of AR, altered DNA repair genes. In this review, we describe key genes and genetic changes that have been recognized to contribute to altered prostate environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686121 | PMC |
http://dx.doi.org/10.1002/cai2.52 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!