Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aluminum (Al) is a popular metal in the industry, and its usage has greatly increased recently. The dose of this metal has been proven to be toxic to rats, but its effects on the offspring of the original receivers and prevention methods to reduce this damage are unknown. is a well-known plant for its high antioxidant capabilities. In this study, the protective effect of extract (RDA) on aluminum-induced lesions in the brain tissue of a rat offspring was investigated. In this regard, female rats were divided into seven groups, including the control group, the sham group, the aluminum group at the dose of 100 mg/kg, the extract groups at the doses of 500 and 1000 mg/kg, and the treatment groups that received the extract and Al at the same doses. After the treatment ended, the offsprings were subjected to exploratory behavioral tests, and finally, the tissues of the brain including the cerebral cortex, hippocampus, and hypothalamus were pathologically examined. It was observed that RDA at the dose of 1000 mg/kg reduced the malondialdehyde (MDA) and acetylcholinesterase (AChE) levels significantly ( < 0.0001), while raising the catalase and FRAP indices in Al-treated rats. Moreover, it increased neuronal counts significantly and reduced necrosis and vacuolar degeneration in both the cortex and hippocampus compared to the Al-receiving group. In addition, the administration of RDA 1000 improved the behavioral test scores of the offspring. In conclusion, RDA can effectively reduce Al-induced damage in the brain tissue of the offspring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713254 | PMC |
http://dx.doi.org/10.1155/2023/5342849 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!