AI Article Synopsis

  • Cross-linking poly(vinyl alcohol) (PVA) creates a hydrogel with unique absorption properties, making it insoluble in water but absorbent.
  • The study successfully fabricates PVA-based conductive semi-interpenetrating polymer networks (semi-IPNs) using eco-friendly cross-linking methods, including thermal treatment and ethanol stabilization.
  • Results show that thermally cross-linked samples have higher cross-linking density, lower conductivity, and improved mechanical properties, while all systems demonstrate biocompatibility and photoresponsivity, making them suitable for biomedical and electronic applications.

Article Abstract

Cross-linking of poly(vinyl alcohol) (PVA) creates a three-dimensional network by bonding adjacent polymer chains. The cross-linked structure, upon immersion in water, turns into a hydrogel, which exhibits unique absorption properties due to the presence of hydrophilic groups within the PVA polymer chains and, simultaneously, ceases to be soluble in water. The properties of PVA can be adjusted by chemical modification or blending with other substances, such as polymers, ., conductive poly[3-(potassium-5-butanoate)thiophene-2,5-diyl] (P3KBT). In this work, PVA-based conductive semi-interpenetrating polymer networks (semi-IPNs) are successfully fabricated. The systems are obtained as a result of electrospinning of PVA/P3KBT precursor solutions with different polymer concentrations and then cross-linking using "green", environmentally safe methods. One approach consists of thermal treatment (H), while the second approach combines stabilization with ethanol and heating (E). The comprehensive characterization allows to evaluate the correlation between the cross-linking methods and properties of nanofibrous hydrogels. While both methods are successful, the cross-linking density is higher in the thermally cross-linked samples, resulting in lower conductivity and swelling ratio compared to the E-treated samples. Moreover, the H-cross-linked systems have better mechanical properties-lower stiffness and greater tensile strength. All the tested systems are biocompatible, and interestingly, due to the presence of P3KBT, they show photoresponsivity to solar radiation generated by the simulator. The results indicate that both methods of PVA cross-linking are highly effective and can be applied to a specific system depending on the target, ., biomedical or electronic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510526PMC
http://dx.doi.org/10.1021/acsmaterialsau.3c00025DOI Listing

Publication Analysis

Top Keywords

conductive semi-interpenetrating
8
semi-interpenetrating polymer
8
polymer chains
8
cross-linking
6
polymer
5
electrospun polyvinyl
4
polyvinyl alcohol-based
4
alcohol-based conductive
4
polymer network
4
network fibrous
4

Similar Publications

In this article, we report on the alginate heterografted by Poly(N-isopropyl acrylamide-co-N-tert-butyl acrylamide) and Poly(N-isopropyl acrylamide) (ALG-g-P(NIPAM86-co-NtBAM14)-g-PNIPAM) copolymer thermoresponsive hydrogel, reinforced by substituting part of the 5 wt% aqueous formulation by small amounts of Poly(acrylic acid)-g-P(boc-L-Lysine) (PAA-g-P(b-LL)) graft copolymer (up to 1 wt%). The resulting complex hydrogels were explored by oscillatory and steady-state shear rheology. The thermoresponsive profile of the formulations were affected remarkably by increasing the PAA-g-P(b-LL) component of the polymer blend.

View Article and Find Full Text PDF
Article Synopsis
  • Soft conductive gels are crucial for epidermal electronics but struggle with uneven skin surfaces, especially where there's hair or mechanical stress.
  • This study presents an in-situ biogel that can shift between liquid and solid states in just 3 minutes using a temperature change, featuring a strong design that enhances its performance.
  • The biogel boasts impressive properties like high tensile strength, skin compatibility, and adhesive strength, making it suitable for applications like exercise data tracking, muscle recovery monitoring, and cardiac signal observation.
View Article and Find Full Text PDF

Acrylamide/Alyssum campestre seed gum hydrogels enhanced with titanium carbide: Rheological insights for cardiac tissue engineering.

Int J Biol Macromol

December 2024

Department of Petroleum Engineering, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran; Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Espoo, Finland.

This study investigates the use of acrylamide and Alyssum campestre seed gum (ACSG) to create hydrogel composites with enhanced electrical and mechanical properties by incorporating titanium carbide (TiC). The composites were analyzed through techniques such as FTIR, SEM, TEM, TGA, swelling, rheology, tensile, electrical conductivity, antibacterial, and MTT assays. XRD analysis showed that 0.

View Article and Find Full Text PDF

Conductive hydrogels have great potential for applications in flexible wearable sensors due to the combination of biocompatibility, mechanical flexibility and electrical conductivity. However, constructing conductive hydrogels with high toughness, low hysteresis and skin-like modulus simultaneously remains challenging. In the present study, we prepared a tough and conductive polyacrylamide/pullulan/ammonium sulfate hydrogel with a semi-interpenetrating network.

View Article and Find Full Text PDF

Influence of agarose in semi-IPN hydrogels for sustained Polymyxin B release.

Colloids Surf B Biointerfaces

December 2024

Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca, Chile. Electronic address:

Hydrogels (HGs) are 3-D polymeric networks with high water content, making them appropriate for biomedical applications such as drug delivery systems. This study examines the impact of agarose in semi-interpenetrating polymer networks (Semi-IPNs) based on poly(acrylic acid) (p(AA)), N, N' Methylenebis(acrylamide) (MBA) and agarose (AGA) on the sustained release of Polymyxin B (PolB). Agarose incorporation improved the mechanical strength, swelling behavior and drug retention capacity of the HG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!