The continuous measurement of percutaneous oxygen saturation (SpO2) enables diseases that cause hypoxemia to be detected early and patients' conditions to be monitored. Currently, SpO2 is mainly measured using a pulse oximeter, which, owing to its simplicity, can be used in clinical settings and at home. However, the pulse oximeter requires a sensor to be in contact with the skin; therefore, prolonged use of the pulse oximeter for neonates or patients with sensitive skin may cause local inflammation or stress due to restricted movement. In addition, owing to COVID-19, there has been a growing demand for the contactless measurement of SpO2. Several studies on measuring SpO2 without contact used skin video images have been conducted. However, in these studies, the SpO2 values were estimated using a linear regression model or a look-up table that required reference values obtained using a contact-type pulse oximeter. In this study, we propose a new technique for the contactless measurement of SpO2 that does not require reference values. Specifically, we used certain approaches that reduced the influence of non-pulsating components and utilized different light wavelengths of video images that penetrated subcutaneously to different depths. We experimentally investigated the accuracy of SpO2 measurements using the proposed methods. The results indicate that the proposed methods were more accurate than the conventional method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10712673PMC
http://dx.doi.org/10.1109/JTEHM.2023.3318643DOI Listing

Publication Analysis

Top Keywords

pulse oximeter
16
reference values
12
oxygen saturation
8
contact skin
8
contactless measurement
8
measurement spo2
8
video images
8
proposed methods
8
spo2
7
non-contact measurement
4

Similar Publications

Pulse oximetry at two sensor placement sites in conscious foals.

Acta Vet Scand

January 2025

Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, 00014, Helsinki, Finland.

Background: Pulse oximetry has not been thoroughly evaluated for assessment of oxygenation in conscious foals. Compared with invasive arterial blood sampling, it is a painless and non-invasive method for real-time monitoring of blood oxygen saturation. The aim of this prospective clinical study was to evaluate the usability, validity, and reliability of pulse oximetry at two measuring sites (lip and caudal abdominal skin fold) for blood oxygen saturation measurement in conscious foals with and without respiratory compromise.

View Article and Find Full Text PDF

A Wearable Prototype Measuring PtcCO and SpO.

IEEE Biomed Circuits Syst Conf

October 2024

Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 USA.

The proper functioning of the respiratory system is evaluated by monitoring the exchange of blood oxygen and carbon dioxide. While wearable devices for monitoring both blood oxygen and carbon dioxide are emerging, wearable carbon dioxide monitors remain relatively rare. This paper introduces a novel wearable prototype that integrates the measurement of transcutaneous carbon dioxide and peripheral blood oxygen saturation on a miniaturized custom-designed printed circuit board.

View Article and Find Full Text PDF

Objectives: The prognostic characteristics of lung point-of-care ultrasound (L-POCUS) to predict respiratory decompensation in patients with emerging infections remains unstudied. Our objective was to examine whether scored lung ultrasounds predict hypoxia among a nonhypoxic, ambulatory population of patients with COVID-19.

Methods: This was a diagnostic case-control study.

View Article and Find Full Text PDF

Community Health Workers (CHWs) in low- and middle-income countries are essential in providing primary health care to remote communities. However, due to limited diagnostic tools, CHWs often struggle to correctly identify childhood illnesses, especially pneumonia. We conducted a prospective pilot study and used qualitative research methods to evaluate acceptability and feasibility of a multimodal pulse oximeter used by CHWs during their integrated community case management (iCCM) of childhood illness consultations in rural Burundi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!