AI Article Synopsis

  • Soy protein is more effective than other proteins in reducing fat mass, especially when combined with exercise, as shown in studies involving mice.
  • The research indicated that consuming soy protein with exercise significantly reduced the weight of fat tissue, particularly in a high-protein diet.
  • Exercise enhanced the activity of certain proteins responsible for lipid oxidation in muscles, suggesting a strong link between soy protein intake, improved muscle function, and fat loss.

Article Abstract

Soy protein has shown remarkable effectiveness in reducing fat mass compared with other protein sources, and exercise has the potential to further enhance this fat loss effect. Previous studies have demonstrated that soy protein intake leads to decreased fatty acid synthesis, which contributes to its fat-loss properties. However, the exact mechanism by which these lipids are consumed remains unclear. To investigate this, we conducted a comprehensive study using C57/BL6 male mice, comparing the effects of soy and casein proteins with and without exercise (Casein-Sed, Casein-Ex, Soy-Sed, and Soy-Ex groups) under high- and low-protein conditions (14% or 40% protein). Our findings revealed that combining soy protein intake with exercise significantly reduced epididymal white adipose tissue (eWAT) weight, particularly in the high-protein diet group. Further analysis revealed that exercise increased the expression of lipid oxidation-regulatory proteins, including mitochondrial oxidative phosphorylation protein (OXPHOS) complexes, in the plantaris muscle regardless of the protein source. Although soy protein intake did not directly affect muscle mitochondrial protein expression, the activity of OXPHOS complex I was additively enhanced by exercise and soy protein under the 40% protein condition. Notably, complex I activity inversely correlated with eWAT weight in the soy protein diet group. These results highlight the potential link between improved complex I activity induced by soy protein and fat mass reduction, which emphasizes the promising benefits of combining soy protein with exercise in promoting fat loss. The findings revealed that soy protein intake combined with exercise resulted in reduced adipose tissue weight compared with that obtained with casein protein intake. Furthermore, the joint impact of exercise and soy protein consumption resulted in enhanced activity of oxidative phosphorylation protein (OXPHOS) complex I in fast-twitch muscles, which appears to be associated with fat mass reduction. These findings elucidate the potential additive effects of soy protein and exercise on body weight management.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00196.2023DOI Listing

Publication Analysis

Top Keywords

soy protein
48
protein
20
protein intake
20
fat mass
16
soy
13
mass reduction
12
exercise
10
intake exercise
8
fat loss
8
effects soy
8

Similar Publications

Fabricating an antioxidant and bacteriostatic soy protein isolate film double-crosslinked via dialdehyde cellulose nanofibers and Tara tannins for beef tallow and cooked pork preservation.

Int J Biol Macromol

January 2025

Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China. Electronic address:

Although Tara tannins (TT) have given soy protein isolate (SPI) film antioxidant properties, the mechanical and barrier properties were not significantly improved. In this work, dialdehyde cellulose nanofibers (DACNF) were obtained through oxidation using sodium periodate and incorporated into SPI film with TT to obtain antioxidant and bacteriostatic properties. With increased DACNF content, the anti-swelling, mechanical and barrier properties of SPI film were enhanced due to a double-crosslinked structure based on the covalent and hydrogen bonds formed between DACNF, TT and SPI.

View Article and Find Full Text PDF

Effect of myoglobin on the flavor, color and texture of high-moisture soy protein concentrate -wheat gluten extrudates.

Food Chem

January 2025

Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China. Electronic address:

The rising demand for plant-based meat analogues presents challenges in replicating the sensory qualities of animal meat. This study investigates the impact of Pichia-derived porcine myoglobin (PMb) and bovine hemoglobin (BHb) on the flavor profile, sensory attributes, macrostructure, color, and texture of high-moisture extruded soy protein concentrate-wheat gluten. The addition of PMb and BHb significantly altered the flavor profile by decreasing aldehyde content (hexanal and nonanal), while the contents of ketones (2,3-octanedione and 3,5-octadien-2-one), pyrazines (2-ethyl-6-methylpyrazine), and furans (2-pentylfuran) were increased.

View Article and Find Full Text PDF

We generated soybean mutants related to two ß-amyrin synthase genes using DNA-free site-directed mutagenesis system. Our results suggested that one of the genes is predominant in the soyasaponin biosynthesis. Soyasaponins, which are triterpenoid saponins contained in soybean [Glycine max (L.

View Article and Find Full Text PDF

Synergistic effects of GmLFYa and GmLFYb on Compound Leaf Development in Soybean.

Physiol Plant

January 2025

School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC).

View Article and Find Full Text PDF

Common adhesives for nonstructural applications are manufactured using petrochemicals and synthetic solvents. These adhesives are associated with environmental and health concerns because of their release of volatile organic compounds (VOCs). Biopolymer adhesives are an attractive alternative because of lower VOC emissions, but their strength is often insufficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!