Critical Role of Boundary Conditions in Sorption Kinetics Measurements.

Langmuir

Laboratoire Navier (Ecole des Ponts Paris Tech-Univ Gustave Eiffel-CNRS), Champs-sur-Marne 77420, France.

Published: December 2023

In order to characterize the hygroscopic properties of cellulose-based materials, which can absorb large amounts of water from vapor in ambient air, or the adsorption capacity of pollutants or molecules in various porous materials, it is common to rely on sorption-desorption dynamic tests. This consists of observing the mass variation over time when the sample is placed in contact with a fluid containing the elements to be absorbed or adsorbed. Here, we focus on the case of a hygroscopic material in contact with air at a relative humidity (RH) differing from that at which it has been prepared. We show that the vapor mass flux going out of the sample follows from the solution of a vapor convection-diffusion problem along the surface and is proportional to the difference between the RH of the air flux and that along the surface with a multiplicative factor (δ) depending only on the characteristics of the air flux and the geometry of the system, including the surface roughness. This factor may be determined from independent measurements in which the RH along the surface is known while keeping all other variables constant. Then we show that the apparent sorption or desorption kinetics critically depend on the competition between boundary conditions and transport through the material. For sufficiently low air flux intensities or small sample thicknesses, the moisture distribution in the sample remains uniform and evolves toward the equilibrium with a kinetics depending on the value of δ and the material thickness. For sufficiently high air flux intensities or large sample thicknesses, the moisture distribution is highly inhomogeneous, and the kinetics reflect the ability of water transport by diffusion through the material. We illustrate and validate this theoretical description on the basis of magnetic resonance imaging experiments on drying cellulose fiber stacks.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c02729DOI Listing

Publication Analysis

Top Keywords

air flux
16
boundary conditions
8
flux intensities
8
sample thicknesses
8
thicknesses moisture
8
moisture distribution
8
air
6
sample
5
flux
5
critical role
4

Similar Publications

Impact of wettability onto the growth of air bubbles at micro-cavities on silicon wafers: Experiments, simulations, and analytical solutions.

J Colloid Interface Sci

December 2024

Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; Institute of Process Engineering, Technische Universität Dresden, 01069 Dresden, Germany. Electronic address:

Hypothesis: The surface wettability influences the oversaturation-driven growth of gas bubbles on the surface via the contact angle. Larger contact angles on hydrophobic surfaces compared to hydrophilic ones lead to faster growth of bubbles nucleating at microcavities of identical size.

Experiments: Cylindric micro-cavities were etched in silicon wafers as nucleation sites.

View Article and Find Full Text PDF

Isotopes unveil overestimation of nutrient-driven oxygen deficit in the tidal rivers of Pearl River Delta during the wet season.

Sci Total Environ

December 2024

The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China; National Key Laboratory of Water Environment Simulation and Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510535, China. Electronic address:

A low dissolved oxygen (DO) concentration in summer has been observed in river-estuary systems worldwide. Many studies have caused our stereotype that biochemical oxygen depletion was higher in summer than in winter; however, there was no direct evidence particularly in the tidal river with complex hydrological and biochemical processes. This study employed natural-abundance and labeled isotopes to quantify seasonal apportionment of biochemical oxygen depletion.

View Article and Find Full Text PDF

Ecological and environmental effects of global photovoltaic power plants: A meta-analysis.

J Environ Manage

December 2024

State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.

The construction of photovoltaic power plants (PVPPs) globally not only mitigates climate change but also exerts various impacts on terrestrial ecosystems. A comprehensive exploration of the intensity of PVPPs on the ecological environmental elements of terrestrial ecosystems, as well as their regulatory mechanisms, is an urgent scientific issue that must be addressed within the context of carbon balance. In this study, we conducted a meta-analysis to investigate the soil, climate, and biological effects of PVPPs construction, as well as changes in ecosystem CO fluxes.

View Article and Find Full Text PDF

Evergreen conifers thrive in challenging environments by maintaining multiple sets of needles, optimizing photosynthesis even under harsh conditions. This study aimed to investigate the relationships between needle structure, photosynthetic parameters, and age along the light gradient in the crowns of Abies alba, Taxus baccata, and Picea abies. We hypothesized that: (1) Needle structure, photochemical parameters, and photosynthetic pigment content correlate with needle age and light levels in tree crowns.

View Article and Find Full Text PDF

Investigating effects of thermokarst lakes on permafrost under equilibrium conditions.

Sci Total Environ

December 2024

Department of Civil Engineering, Queen's University, 99 University Ave, Kingston K7L3N5, ON, Canada. Electronic address:

The degradation of permafrost due to climate change has significant effects on the hydrological processes and ecosystems in arctic and subarctic regions. Thermokarst lakes, formed from permafrost thaw and subsidence, play a crucial role in this process by influencing heat storage and exchange and accelerating the thaw rate of the surrounding permafrost. A direct effect of these lakes is the formation of taliks, perennially thawed soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!