A reductive (3+2) annulation of lactams through iridium-catalyzed hydrosilylation and photoredox coupling with α-bromoacetic acid was developed. The iridium-catalyzed hydrosilylation of the lactam carbonyl group and subsequent elimination provide a transient cyclic enamine, which undergoes iridium-catalyzed photoredox coupling with α-bromoacetic acid in a one-pot process. The developed conditions show high functional-group tolerance and provide cyclic N,O-acetals containing a quaternary carbon center. The resulting N,O-acetals undergo a variety of acid-mediated nucleophilic addition reactions via iminium ions to give substituted cyclic amines. The developed sequence including reductive (3+2) annulation and acid-mediated nucleophilic addition was successfully applied to the four-step total synthesis of (±)-eburnamonine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202317290 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!