Manipulating mechanical properties of PEG-based hydrogel nanocomposite: A potential versatile bio-adhesive for the suture-less repair of tissue.

J Mech Behav Biomed Mater

Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada. Electronic address:

Published: February 2024

Multifunctional bio-adhesives with tunable mechanical properties are obtained by controlling the orientation of anisotropic particles in a blend of fast-curing hydrogel with an imposed capillary flow. The suspensions' microstructural evolution was monitored by the small-angle light scattering (SALS) method during flow up to the critical Péclet number (Pe≈1) necessary for particle orientation and hydrogel crosslinking. The multifunctional bio-adhesives were obtained by combining flow and UV light exposure for rapid photo-curing of PEGDA medium and freezing titania rods' ordered microstructures. Blending the low- and high-molecular weight of PEGDA polymer improved the mechanical properties of the final hydrogel. All the hydrogel samples were non-cytotoxic up to 72 h after cell culturing. The system shows rapid blood hemostasis and promotes adhesive and cohesive strength matching targeted tissue properties with an applicating methodology compatible with surgical conditions. The developed SALS approach to optimize nanoparticles' microstructures in bio-adhesive applies to virtually any optically transparent nanocomposite and any type of anisotropic nanoparticles. As such, this method enables rational design of bio-adhesives with enhanced anisotropic mechanical properties which can be tailored to potentially any type of tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2023.106285DOI Listing

Publication Analysis

Top Keywords

mechanical properties
16
multifunctional bio-adhesives
8
properties
5
hydrogel
5
manipulating mechanical
4
properties peg-based
4
peg-based hydrogel
4
hydrogel nanocomposite
4
nanocomposite potential
4
potential versatile
4

Similar Publications

Resonance-Induced Therapeutic Technique for Skin Cancer Cells.

Ultrasound Med Biol

January 2025

Institute of Biomedical Technologies, Auckland University of Technology, Auckland City, 1010, Auckland, New Zealand. Electronic address:

Objective: This study aims to evaluate the viability of a hypothesis for selective targeting of skin cancer cells by exploiting the spectral gap with healthy cells using analytical and numerical simulation.

Methods: The spectral gap was first identified using a viscoelastic dynamic model, with the physical and mechanical properties of healthy and cancerous skin cells deduced from previous experimental studies conducted on cell lines. The outcome of the analytical simulation was verified numerically using modal and harmonic analysis.

View Article and Find Full Text PDF

A critical view of silk fibroin for non-viral gene therapy.

Int J Biol Macromol

January 2025

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, PR China. Electronic address:

Exogenous genes are inserted into target cells during gene therapy in order to compensate or rectify disorders brought on by faulty or aberrant genes. However, gene therapy is still in its early stages because of its unsatisfactory therapeutic effects which are mainly due to low transfection efficiency of vectors, high toxicity, and poor target specificity. A natural polymer with numerous bioactive sites, good mechanical qualities, biodegradability, biocompatibility, and processability called silk fibroin has gained attention as a possible gene therapy vector.

View Article and Find Full Text PDF

Evaluation of biobased materials in the development of polymeric membranes for water capture and purification.

Int J Biol Macromol

January 2025

Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain.

The current study addresses the pressing issue of unsustainable water management, particularly in regions experiencing high water stress. It focuses on examining the viability of polymeric membranes composed of biobased materials, mainly chitosan, for various sustainable water management solutions. The membranes evaluated in the study were blends of PVC with either chitosan-silica or charcoal-silica, designed to enhance their functionality and performance.

View Article and Find Full Text PDF

Extension of shelf-life of mangoes using PLA-cardanol-amine functionalized graphene active films.

Int J Biol Macromol

January 2025

Food Packaging Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:

Multifunctional PLA films were fabricated through the solution casting method by incorporating cardanol oil (CA) and amine-functionalized graphene (AFG). The effect of the CA, and AFG on the structural, mechanical, thermal, thermo-mechanical and antioxidant properties of PLA films were investigated. FTIR analysis of PLA-CA films showed distinct peak positions at 1590 cm corresponding to the aromatic CC bonds of CA, showing that CA is compatible with the PLA.

View Article and Find Full Text PDF

Utilization of structure-specific lignin extracted from coconut fiber via deep eutectic solvents to enhance the functional properties of PVA nanocomposite films.

Int J Biol Macromol

January 2025

College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China.

This study utilized deep eutectic solvents (DES) based on choline chloride/lactic acid (ChCl/LA) to deconstruct coconut fibers. The effects of DES with different temperatures and molar ratios on the yield of lignin, recovery rate of residues, structural changes in lignin and solid residues, and saccharification efficiency were investigated. The results showed that acidic DES treatment effectively deconstructed the coconut fibers, resulting in a high lignin yield of 68.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!