Hematopoietic stem/progenitor cell (HSPC)-based anti-HIV-1 gene therapy holds great promise to eradicate HIV-1 or to provide long-term remission through a continuous supply of anti-HIV-1 gene-modified cells without ongoing antiretroviral therapy. However, achieving sufficient engraftment levels of anti-HIV gene-modified HSPC to provide therapeutic efficacy has been a major limitation. Here, we report an in vivo selection strategy for anti-HIV-1 gene-modified HSPC by introducing 6-thioguanine (6TG) chemoresistance through knocking down hypoxanthine-guanine phosphoribosyl transferase (HPRT) expression using RNA interference (RNAi). We developed a lentiviral vector capable of co-expressing short hairpin RNA (shRNA) against HPRT alongside two anti-HIV-1 genes: shRNA targeting HIV-1 co-receptor CCR5 and a membrane-anchored HIV-1 fusion inhibitor, C46, for efficient in vivo selection of anti-HIV-1 gene-modified human HSPC. 6TG-mediated preconditioning and in vivo selection significantly enhanced engraftment of HPRT-knockdown anti-HIV-1 gene-modified cells (>2-fold, p < 0.0001) in humanized bone marrow/liver/thymus (huBLT) mice. Viral load was significantly reduced (>1 log fold, p < 0.001) in 6TG-treated HIV-1-infected huBLT mice compared to 6TG-untreated mice. We demonstrated that 6TG-mediated preconditioning and in vivo selection considerably improved engraftment of HPRT-knockdown anti-HIV-1 gene-modified HSPC and repopulation of anti-HIV-1 gene-modified hematopoietic cells in huBLT mice, allowing for efficient HIV-1 inhibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862071 | PMC |
http://dx.doi.org/10.1016/j.ymthe.2023.12.007 | DOI Listing |
Mol Ther
February 2024
UCLA AIDS Institute, UCLA, Los Angeles, CA 90024, USA; UCLA School of Nursing, UCLA, Los Angeles, CA 90095, USA. Electronic address:
Hematopoietic stem/progenitor cell (HSPC)-based anti-HIV-1 gene therapy holds great promise to eradicate HIV-1 or to provide long-term remission through a continuous supply of anti-HIV-1 gene-modified cells without ongoing antiretroviral therapy. However, achieving sufficient engraftment levels of anti-HIV gene-modified HSPC to provide therapeutic efficacy has been a major limitation. Here, we report an in vivo selection strategy for anti-HIV-1 gene-modified HSPC by introducing 6-thioguanine (6TG) chemoresistance through knocking down hypoxanthine-guanine phosphoribosyl transferase (HPRT) expression using RNA interference (RNAi).
View Article and Find Full Text PDFSci Adv
July 2020
Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
Despite advances in hematopoietic stem/progenitor cell (HSPC) transplant for HIV-1-infected patients, the impact of a preexisting HIV-1 infection on the engraftment and clonal repopulation of HSPCs remains poorly understood. We have developed a long terminal repeat indexing-mediated integration site sequencing (LTRi-Seq) method that provides a multiplexed clonal quantitation of both anti-HIV-1 RNAi (RNA interference) gene-modified and control vector-modified cell populations, together with HIV-1-infected cells-all within the same animal. In our HIV-1-preinfected humanized mice, both therapeutic and control HSPCs repopulated efficiently without abnormalities.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2018
Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
Investigations of anti-HIV-1 human hematopoietic stem/progenitor cell (HSPC)-based gene therapy have been performed by HIV-1 challenge after the engraftment of gene-modified HSPCs in humanized mouse models. However, the clinical application of gene therapy is to treat HIV-1-infected patients. Here, we developed a new method to investigate an anti-HIV-1 HSPC-based gene therapy in humanized mice previously infected with HIV-1.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
May 2015
Calimmune Pty Ltd , Darlinghurst, New South Wales, Australia.
Gene transfer has therapeutic potential for treating HIV-1 infection by generating cells that are resistant to the virus. We have engineered a novel self-inactivating lentiviral vector, LVsh5/C46, using two viral-entry inhibitors to block early steps of HIV-1 cycle. The LVsh5/C46 vector encodes a short hairpin RNA (shRNA) for downregulation of CCR5, in combination with the HIV-1 fusion inhibitor, C46.
View Article and Find Full Text PDFAIDS Res Ther
June 2008
Division of Hematology/Oncology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.
Background: Human immunodeficiency virus type 1 (HIV-1)-based gene delivery systems are popular due to their superior efficiency of transduction of primary cells. However, these systems cannot be readily used for delivery of anti-HIV-1 genes that target constituents of the packaging system itself due to inimical effects on vector titer. Here we describe HIV-1-based packaging systems containing the Rev-response element (RRE), of simian immunodeficiency virus (SIV) in place of the HIV-1 RRE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!