Unveiling the Critical Role of Surface Hydroxyl Groups for Electro-Assisted Uranium Extraction from Wastewater.

Inorg Chem

State Key Laboratory of Environment-friendly Energy Materials, School of Environment and Resources, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, P. R. China.

Published: December 2023

The electro-driven extraction of uranium from fluorine-containing uranium wastewater is anticipated to address the challenge of separating fluoro-uranium complexes in conventional technologies. Herein, we developed hydroxy-rich cobalt-based oxides (CoO) for electro-assisted uranium extraction from fluorine-containing wastewater. Relying on theoretical calculations and other spectral measurements, the hydroxy-rich CoO nanosheets can enhance the affinity for uranium due to the existence of a substantial quantity of hydroxyl groups. Accordingly, the CoO nanosheets exhibit outstanding U(VI) removal efficiency in the presence of fluorine ions. Through the utilization of X-ray absorption fine structure (XAFS), we confirm that hydroxy-rich CoO nanosheets capture free uranyl ions to form a sturdy 2O-1U-3O configuration, which can be achieved through electro-driven fluorine-uranium separation. Notably, for the first time, the whole reaction process of uranium species on the CoO surface from the initial uranium single atom growth to uranium oxide nanosheets is monitored by aberration-corrected transmission electron microscopes (AC-TEM). This work provides a paradigm for the advancement of novel functional materials as electrocatalysts for uranium extraction, as well as a new approach for studying the evolution mechanism of uranium species.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.3c03967DOI Listing

Publication Analysis

Top Keywords

uranium extraction
12
coo nanosheets
12
uranium
10
hydroxyl groups
8
electro-assisted uranium
8
hydroxy-rich coo
8
uranium species
8
coo
5
unveiling critical
4
critical role
4

Similar Publications

Synthesis mechanisms, property characterization, and environmental applications of biogenic FeS: A review.

Water Res

January 2025

Baohang Environment Co., LTD, Beijing 100070, China. Electronic address:

Iron sulfide (FeS) exhibits superior reactivity toward a wide range of contaminants, making it a promising candidate for environmental remediation in various media, including surface water, wastewater, soil, and groundwater. Driven by green and sustainable development principles, efficient, low-cost, and environmentally friendly biosynthesis has attracted considerable attention and has great environmental remediation potential. This review provides a comprehensive overview of the recent advances in biogenic FeS (bio-FeS), focusing on its synthesis mechanisms, performance characterization, and environmental applications.

View Article and Find Full Text PDF

Fully biobased and robust antibacterial cellulose aerogel for uranium extraction.

Int J Biol Macromol

January 2025

Qingdao New Energy Shandong Laboratory, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

Developing efficient adsorbent is imperative for the utilization of uranium resources in seawater. Marine microorganisms and bacteria play an important role in the process of adsorption of uranium. In this work, a completely bio-based antimicrobial aerogel (quaternary cellulose/chitosan aerogel-QCNF/CS) was prepared by cross-linking quaternary cellulose nanofibers (QCNF) and chitosan (CS) via citric acid (CA).

View Article and Find Full Text PDF

Extracting uranium from nuclear wastewater is vital for environmental and human health protection. However, despite progress in uranium extraction, there remains a demand for an optimized adsorbent with improved capability, efficiency, and selectivity. To bridge this gap, 1,2,3,4-butane tetracarboxylic acid (BTCA)-modified MIL-101 was synthesized through a simple hydrothermal reaction between amino-modified MIL-101 (MIL-101-NH) and BTCA.

View Article and Find Full Text PDF

This article develops the idea that late modern war's relationship with the (the ground and the life it sustains) is doubly destructive. While part of this is recognized in a recent focus on slow violence and ecological aftermaths, there is little consideration of the 'beforemath', or the sites of extraction that make advanced military technologies possible. Drawing attention to mining in the Democratic Republic of the Congo (DRC), the article connects military technologies to arms manufacturers and their use of extracted minerals (e.

View Article and Find Full Text PDF

Chronic Radium-226 toxicity to and oxidative stress in the aquatic invertebrate .

Toxicol Res (Camb)

February 2025

Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada.

The mining industry, including uranium mining and milling, is of high importance in Canada. It is, however, important to consider that ore processing can result in the creation of by-products that contain radionuclides such as radium-226 (Ra). Even with the strict discharge regulations in place, there is limited evidence to suggest that the current Canadian regulatory thresholds for Ra are protective for aquatic life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!