AI Article Synopsis

  • Real-time imaging of laser materials processing is hindered by plasma generated by the laser, which obscures direct visibility of the material.
  • The plasma's structure is influenced by the sample's surface profile, allowing for indirect imaging through analysis of the plasma.
  • This study showcases how deep learning can predict the surface appearance of silicon in real-time during femtosecond laser machining, providing a valuable tool for monitoring laser processing when direct observation isn't feasible.

Article Abstract

Real-time imaging of laser materials processing can be challenging as the laser generated plasma can prevent direct observation of the sample. However, the spatial structure of the generated plasma is strongly dependent on the surface profile of the sample, and therefore can be interrogated to indirectly provide an image of the sample. In this study, we demonstrate that deep learning can be used to predict the appearance of the surface of silicon before and after the laser pulse, in real-time, when being machined by single femtosecond pulses, directly from camera images of the generated plasma. This demonstration has immediate impact for real-time feedback and monitoring of laser materials processing where direct observation of the sample is not possible.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.507708DOI Listing

Publication Analysis

Top Keywords

generated plasma
12
imaging laser
8
deep learning
8
laser materials
8
materials processing
8
direct observation
8
observation sample
8
laser
5
live imaging
4
laser machining
4

Similar Publications

Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119.

View Article and Find Full Text PDF

Antibodies to β2-glycoprotein I (β2GPI) cause thrombosis in antiphospholipid syndrome, however the role of β2GPI in coagulation in vivo is not understood. To address this issue, we developed β2GPI-deficient mice (Apoh-/-) by deleting exon 2 and 3 of Apoh using CRISPR/Cas9 and compared the development of thrombosis in wild-type (WT) and Apoh-/- mice using rose bengal and FeCl3-induced carotid thrombosis, laser-induced cremaster arteriolar injury, and inferior vena cava (IVC) stasis models. We also compared tail bleeding times and activation of platelets from WT and Apoh-/- mice in the absence and presence of β2GPI.

View Article and Find Full Text PDF

Background: Acute ischemic stroke treatment typically involves tissue-type plasminogen activator (tPA) or tenecteplase, but about 50% of patients do not achieve successful reperfusion. The causes of tPA resistance, influenced by thrombus composition and timing, are not fully clear. Neutrophil extracellular traps (NETs), associated with poor outcomes and reperfusion resistance, contribute to thrombosis.

View Article and Find Full Text PDF

Background: AUC-based dosing with validated Bayesian software is recommended as a good approach to guide bedside vancomycin dosing.

Objectives: To compare treatment and vancomycin-associated acute kidney injury (AKI) costs between Bayesian AUC-based dosing and conventional therapeutic drug monitoring (TDM) using steady-state plasma concentrations of vancomycin administered as continuous infusion in hospitalized non-critically ill patients with severe Gram-positive infection.

Methods: A cost-benefit analysis presented as a return on investment (ROI) analysis from a hospital perspective was conducted using a decision tree model (TDM versus AUC-based dosing) to simulate treatment cost (personnel, serum sampling and drug cost), vancomycin-associated AKI risk and cost up to 14 days.

View Article and Find Full Text PDF

Introduction: Graft optimization is a necessity in order to develop uterus transplantation from brain-dead donors, as a complement to living donors, as these grafts are rare and the last organs retrieved in multiple organ donation. The aim of this study was to assess the feasibility and interest of hypothermic machine perfusion (HMP) in uterus transplantation using a porcine model; secondary outcomes were the evaluation of the graft's tolerance to a prolonged cold ischaemia time and to find new biomarkers of uterus viability.

Material And Methods: Fifteen uterus allotransplantations were performed in a porcine model, after 18 h of cold ischaemia, divided in three groups: Static cold storage in a HTK solution, HMP (with the VitaSmart (™) machine Bridge to Life Ltd.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!