Large-area copper layer removal is one of the essential processes in manufacturing printed circuit boards (PCB) and frequency selective surfaces (FSS). However, laser direct ablation (LDA) with one-step scanning is challenging in resolving excessive substrate damage and material residue. Here, this study proposes a laser scanning strategy based on the laser-induced active mechanical peeling (LIAMP) effect generated by resin decomposition. This scanning strategy allows the removal of large-area copper layers from FR-4 copper-clad laminates (FR-4 CCL) in one-step scanning without additional manual intervention. During the removal process, the resin decomposition in the laser-irradiated area provides the mechanical tearing force, while the resin decomposition in the laser-unirradiated area reduces the interfacial adhesion force and provides recoil pressure. By optimizing scanning parameters to control the laser energy deposition, the substrate damage and copper residue can be effectively avoided. In our work, the maximum removal efficiency with different energy densities, pulse duration, and repetition frequency are 31.8 mm/ms, 30.25 mm/ms, and 82.8 mm/ms, respectively. Compared with the reported copper removal using laser direct write lithography technology combined with wet chemical etching (LDWL+WCE) and LDA, the efficiency improved by 8.3 times and 66 times. Predictably, the laser scanning strategy and the peeling mechanism are simple and controllable, which have potential in electronics, communications, and aerospace.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.506860 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!