Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vernier effect enhances the sensitivity for interferometric fiber sensor, but indiscriminately amplifies cross-sensitivity to environmental parameters. Here, hybrid Vernier effect, a new theory based on the cascaded FPI, is proposed and demonstrated for cross-sensitivity elimination under the premise of sensitivity amplification. It combines traditional and high-order harmonic Vernier effects to measure two parameters simultaneously. The proposed sensor achieves strain sensitivity of 960.1 pm/µɛ, and temperature sensitivity of 1260.86 pm/°C. Stability experiments demonstrate excellent stability of envelope demodulation method, with minimum temperature resolution of 0.44 °C and minimum strain resolution of 0.58 µɛ. The proposed the hybrid Vernier effect can be achieved widely in common cascaded fiber FPI fiber sensor structure, making it good candidate for practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.500583 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!