Background: The success of AlphaFold2 in reliable protein three-dimensional (3D) structure prediction, assists the move of structural biology toward studies of protein dynamics and mutational impact on structure and function. This transition needs tools that qualitatively assess alternative 3D conformations.
Results: We introduce MutAmore, a bioinformatics tool that renders individual images of protein 3D structures for, e.g., sequence mutations into a visually intuitive movie format. MutAmore streamlines a pipeline casting single amino-acid variations (SAVs) into a dynamic 3D mutation movie providing a qualitative perspective on the mutational landscape of a protein. By default, the tool first generates all possible variants of the sequence reachable through SAVs (L*19 for proteins with L residues). Next, it predicts the structural conformation for all L*19 variants using state-of-the-art models. Finally, it visualizes the mutation matrix and produces a color-coded 3D animation. Alternatively, users can input other types of variants, e.g., from experimental structures.
Conclusion: MutAmore samples alternative protein configurations to study the dynamical space accessible from SAVs in the post-AlphaFold2 era of structural biology. As the field shifts towards the exploration of alternative conformations of proteins, MutAmore aids in the understanding of the structural impact of mutations by providing a flexible pipeline for the generation of protein mutation movies using current and future structure prediction models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10714560 | PMC |
http://dx.doi.org/10.1186/s12859-023-05610-8 | DOI Listing |
JACS Au
January 2025
Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany.
Interactions of polyelectrolytes (PEs) with proteins play a crucial role in numerous biological processes, such as the internalization of virus particles into host cells. Although docking, machine learning methods, and molecular dynamics (MD) simulations are utilized to estimate binding poses and binding free energies of small-molecule drugs to proteins, quantitative prediction of the binding thermodynamics of PE-based drugs presents a significant obstacle in computer-aided drug design. This is due to the sluggish dynamics of PEs caused by their size and strong charge-charge correlations.
View Article and Find Full Text PDFJACS Au
January 2025
Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Proteomics Shared Resources, Knight Cancer Institute, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239, United States.
Proteins regulate biological functions through the formation of distinct protein complexes. Identification and characterization of these protein-protein interactions are critical to deciphering their mechanism of action. Different antibody-based or cross-linking-based methods have been developed to identify the protein-protein interactions.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy.
Naturally occurring photoenzymes are rare in nature, but among them, fatty acid photodecarboxylases derived from (FAPs) have emerged as promising photobiocatalysts capable of performing the redox-neutral, light-induced decarboxylation of free fatty acids (FAs) into C1-shortened alka(e)nes. Using a hybrid QM/MM approach combined with a polarizable embedding scheme, we identify the structural changes of the active site and determine the energetic landscape of the forward electron transfer (fET) from the FA substrate to the excited flavin adenine dinucleotide. We obtain a charge-transfer diradical structure where a water molecule rearranges spontaneously to form a H-bond interaction with the excited flavin, while the FA's carboxylate group twists and migrates away from it.
View Article and Find Full Text PDFExtracell Vesicle
December 2024
The Jared Grantham Kidney Institute at the University of Kansas Medical Center, Department of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS 66160, USA.
Autosomal dominant polycystic kidney (ADPKD) disease is the commonest genetic cause of kidney failure (affecting 1:800 individuals) and is due to heterozygous germline mutations in either of two genes, and . Homozygous germline mutations in are responsible for autosomal recessive polycystic kidney (ARPKD) disease a rare (1:20,000) but severe neonatal disease. The products of these three genes, (polycystin-1 (PC1 4302(3)aa)), (polycystin-2 (PC2 968aa)) and (fibrocystin (4074aa)) are all present on extracellular vesicles (EVs) termed, PKD-exosome-like vesicles (PKD-ELVs).
View Article and Find Full Text PDFF1000Res
January 2025
Dept. Computer Science, Integrative Bioinformatics, Vrije Universiteit, Amsterdam, The Netherlands.
The solute carrier (SLC) family of membrane proteins is a large class of transporters for many small molecules that are vital for cellular function. Several pathogenic mutations are reported in the glucose transporter subfamily SLC2, causing Glut1-deficiency syndrome (GLUT1DS1, GLUT1DS2), epilepsy (EIG2) and cryohydrocytosis with neurological defects (Dystonia-9). Understanding the link between these mutations and transporter dynamics is crucial to elucidate their role in the dysfunction of the underlying transport mechanism, which we investigate using molecular dynamics simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!