Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-023-02715-4 | DOI Listing |
The Clinical Laboratory (CL) is involved in the prevention, diagnosis and follow-up of disease, as well as in the monitoring of treatment. For this reason, the CL must have robust quality systems in place in order to provide reliable results that help to ensure correct health care. Since the entry into force of the European regulation (IVDR) on in vitro diagnostic medical devices (EU) 2017/746 has generated the loss of CE marking in some laboratory determinations.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA.
In vitro studies have shown that a neuron's electroresponsive properties can predispose it to oscillate at specific frequencies. In contrast, network activity in vivo can entrain neurons to rhythms that their biophysical properties do not predispose them to favor. However, there is limited information on the comparative frequency profile of unit entrainment across brain regions.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Division of Fixed Prosthodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
Background: Increasing demand for durable and aesthetically pleasing dental restorations, including laminates, inlays, onlays, and crowns, has led to advancements in all-ceramic systems, particularly with the development of advanced lithium disilicate materials. However, limited data on the fit accuracy and fracture resistance of these materials restricts their wider application in clinical restorative practices.
Aim Of The Study: This in vitro study aims to compare the marginal and internal fit, assess the fracture resistance, and evaluate the failure modes of crowns fabricated from advanced and conventional lithium disilicate materials.
J Anim Physiol Anim Nutr (Berl)
January 2025
Department of Animal Science, Wageningen University & Research, Wageningen, The Netherlands.
White rot fungi can degrade lignin and improve the nutritional value of highly lignified biomass for ruminants. We screened for excellent fungi-biomass combinations by investigating the improvement of digestibility of wheat straw, barley straw, oat straw, rapeseed straw, miscanthus, new reed, spent reed from thatched roofs, and cocoa shells after colonisation by Ceriporiopsis subvermispora (CS), Lentinula edodes (LE), and Pleurotus eryngii (PE) (indicated by increased in vitro gas production [IVGP]). First, growth was evaluated for three fungi on all types of biomass, over a period of 17 days in race tubes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!