Ambient ionization (AI) is a rapidly growing field in mass spectrometry (MS). It allows for the direct analysis of samples without any sample preparation, making it a promising technique for the detection of explosives. Previous studies have shown that AI can be used to detect a variety of explosives, but the exact gas-phase reactions that occur during ionization are not fully understood. This is further complicated by differences in mass spectrometers and individual experimental set ups between researchers. This study investigated the gas-phase ion reactions of five different explosives using a variety of AI techniques coupled to a Waters QDa mass spectrometer to identify selective ions for explosive detection and identification based on the applied ambient ionization technique. The results showed that the choice of the ion source can have a significant impact on the number of ions observed. This can affect the sensitivity and selectivity of the data produced. The findings of this study provide new insights into the gas-phase ion reactions of explosives and could lead to the development of more sensitive and selective AI-based methods for their detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767746PMC
http://dx.doi.org/10.1021/jasms.3c00305DOI Listing

Publication Analysis

Top Keywords

ambient ionization
12
mass spectrometry
8
gas-phase ion
8
ion reactions
8
reactions explosives
8
selectivity explosives
4
explosives analysis
4
analysis ambient
4
ionization
4
ionization single
4

Similar Publications

Ambient mass spectrometry imaging (MSI) enables hundreds of analytes in tissue sections to be directly mapped at atmospheric pressure with minimal sample preparation. This field is currently experiencing rapid growth, with numerous reported ambient ionization techniques resulting in a "hundred flowers bloom" situation. Nanospray desorption electrospray ionization (nano-DESI), developed by the Laskin group in 2010, is a widely used liquid-extraction-based ambient ionization technique that was first used for mass spectrometry imaging of tissue in 2012.

View Article and Find Full Text PDF

[Progress in applications of ambient ionization mass spectrometry for lipids identification].

Se Pu

January 2025

Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Lipids are indispensable components of living organisms and play pivotal roles in cell-membrane fluidity, energy provision, and neurotransmitter transmission and transport. Lipids can act as potential biomarkers of diseases given their abilities to indicate cell-growth status. For example, the lipid-metabolism processes of cancer cells are distinct from those of normal cells owing to their rapid proliferation and adaptation to ever-changing biological environments.

View Article and Find Full Text PDF

Twisted Dipole Ion Guide (TDIG) for Flexible Ion Transfer in Atmospheric Pressure Ionization Mass Spectrometry.

Anal Chem

December 2024

Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, People's Republic of China.

In ambient mass spectrometry, the performance in direct in situ analysis applications has been hindered by the lack of efficient ion-transferring technique between the atmosphere pressure ionization source and the mass analyzer. Building upon the hybrid concept of a stack ring ion guide and multipole ion guide, this study proposes the concept of a reconfigurable twisted dipole ion guide (TDIG) that enables flexible ion transfer between atmosphere and vacuum. Initially, theoretical and numerical studies were conducted to understand the basic ion confining principle of the twisted dipole ion guide, revealing its unique merits in long-distance flexible ion transmission.

View Article and Find Full Text PDF

Ambient mass spectrometry (MS) technologies have been applied to spatial metabolomic profiling of various samples in an attempt to both increase analysis speed and reduce the length of sample preparation. Recent studies, however, have focused on improving the spatial resolution of ambient approaches. Finer resolution requires greater analysis times and commensurate computing power for more sophisticated data analysis algorithms and larger data sets.

View Article and Find Full Text PDF

Background: Minimizing air aspiration by carefully filling blood gas syringes is crucial to prevent air contamination from causing undesirable variations in gasses and other molecules. While some previous studies investigated this aspect, these are now outdated and only analyzed a limited number of blood gas parameters. Thus, we investigated the effects air contamination in the syringe using a modern blood gas analyzer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!