Linear cyanide-bridged polymetallic complexes, which undergo photoinduced metal-to-metal charge transfer, represent prototypical systems for studying long-range electron-transfer reactions and understanding the role played by specific solute-solvent interactions in modulating the excited-state dynamics. To tackle this problem, while achieving a statistically meaningful description of the solvent and of its relaxation, one needs a computational approach capable of handling large polynuclear transition-metal complexes, both in their ground and excited states, as well as the ability to follow their dynamics in several environments up to nanosecond time scales. Here, we present a mixed quantum classical approach, which combines large-scale molecular dynamics (MD) simulations based on an accurate quantum mechanically derived force field (QMD-FF) and self-consistent QMD polarized point charges, with IR and UV-vis spectral calculations to model the solvation dynamics and optical properties of a cyano-bridged trinuclear mixed-valence compound (-[(NC)Fe(μ-CN)Ru(pyridine)(μ-NC)Fe(CN)]). We demonstrate the reliability of the QMD-FF/MD approach in sampling the solute conformational space and capturing the local solute-solvent interactions by comparing the results with higher-level quantum mechanics/molecular mechanics (QM/MM) MD reference data. The IR spectra calculated along the classical MD trajectories in different solvents correctly predict the red shift of the CN stretching band in the aprotic medium (acetonitrile) and the subtle differences measured in water and methanol, respectively. By explicitly including the solvent molecules around the cyanide ligands and calculating the thermal averaged absorption spectra using time-dependent density functional theory calculations within the Tamm-Dancoff approximation, the experimental solvatochromic shift is quantitatively reproduced going from water to methanol, while it is overestimated for acetonitrile. This discrepancy can likely be traced back to the lack of important dispersion interactions between the solvent cyano groups and the pyridine substituents in our micro solvation model. The proposed protocol is applied to the ground state in water, methanol, and acetonitrile and can be flexibly generalized to study excited-state nonequilibrium solvation dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.3c01084 | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar-470003, India.
In a recent communication (A. Shivhare, B. Dehariya, S.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
Since water is both a product and a common reactant impurity in the (partial) methanol oxidation to methyl formate (MeFo) on gold, its effect on the isothermal selectivity to methyl formate was investigated under well-defined single-collision conditions employing pulsed molecular beam experiments and in situ IRAS measurements. Both a flat Au(111) and a stepped Au(332) surface were used as model catalysts to elucidate how water affects the reactivity of low-coordinated step sites as compared to (111) terrace sites employing a range of reaction conditions. The interactions of water with methanol/methoxy as well as with oxygen species are addressed.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Urology, Beilun People's Hospital, Ningbo, Zhejiang, China.
Renal ischemia-reperfusion (IR) induces tissue hypoxia, resulting in disrupted energy metabolism and heightened oxidative stress. These factors contribute to tubular cell damage, which is a leading cause of acute kidney injury (AKI) and can progress to chronic kidney disease (CKD). The excessive generation of reactive oxygen species (ROS) plays a crucial role in the pathogenesis of AKI.
View Article and Find Full Text PDFSmall Methods
January 2025
Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun, 130024, China.
The clean conversion of CO is a strategic issue for addressing global climate change and advancing energy transformation. While the current clean CO conversion is limited to the H pyrolysis process, using HO as a proton source is more promising and sustainable. A microplasma discharge method is developed, driven by electricity, and utilized for CO conversion with HO.
View Article and Find Full Text PDFAnal Chem
January 2025
Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.
Compound-specific stable isotope analysis (CSIA) using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is a powerful tool for determining the isotopic composition of carbon in analytes from complex mixtures. However, LC-IRMS methods are constrained to fully aqueous eluents. Previous efforts to overcome this limitation were unsuccessful, as the use of organic eluents in LC-IRMS was deemed impossible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!