3D printing technology has great advantages in small batch and personalized customization, so it has attracted much attention in the biomedical field. The consumables available for 3D printing include polymer, metal, ceramic and derived materials. Biomedical ceramics, with high melting point and poor toughness, are the most difficult materials to be used in 3D printing. The progress of 3D printing ceramic preparation process using ceramic powder, ceramic slurry, ceramic wire, ceramic film and other different raw materials as consumables are reviewed, and the surface roughness, size, density and other parameters of ceramics prepared by SLS, 3DP, DIW, IJP, SL, DLP, FDM, LOM and other different processes are compared. The study also summarizes the clinical application status of 3D printed bioceramics in the field of hard tissue repair such as bone tissue engineering scaffolds and dental prostheses. The SL ceramic additive manufacturing technology based on the principle of UV polymerization has better manufacturing precision, forming quality and the ability to prepare large-size parts, and can also endow bioceramics with better biological properties, mechanical properties, antibacterial, tumor treatment and other functions by doping trace nutrients and surface functional modification. Compared with the traditional subtractive manufacturing process, the bioceramics prepared by 3D printing not only have good mechanical properties, but also often have better biocompatibility and osteoconductivity.

Download full-text PDF

Source
http://dx.doi.org/10.3969/j.issn.1671-7104.2023.06.012DOI Listing

Publication Analysis

Top Keywords

printing technology
8
mechanical properties
8
ceramic
7
printing
5
[status printing
4
technology preparing
4
preparing bioceramic
4
bioceramic materials]
4
materials] printing
4
technology great
4

Similar Publications

Background: Multifunctional fluorescent probes have attracted much attention due to their wide range of applications and high utilization. In this study, a multifunctional fluorescent probe (E)-3-(4-(7-(4-(diphenylamino)phenyl)benzo[c] [1,2,5]thiadiazol-4-yl)phenyl)acrylic acid (TBAC) based on triphenylamine was designed and synthesized.

Results: The TBAC probe provided excellent aggregation-induced emission (AIE) performance and could be used as a fluorescent ink for printing.

View Article and Find Full Text PDF

Background/purpose: The advent of digital technologies has significantly transformed the current dentistry, particularly in the fabrication of removable dental prostheses. A bibliometric analysis of literature may provide a direction of research hotspots and future trends in this field.

Materials And Methods: Data were retrieved from Web of Science database for the analysis of literature on digital technologies for removable dental prostheses.

View Article and Find Full Text PDF

Advancing diagnostics and disease modeling: current concepts in biofabrication of soft microfluidic systems.

In Vitro Model

June 2024

3B's Research Group, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, Zona Industrial da Gandra - Avepark, Barco, Guimaraes, 4805-017 Portugal.

Soft microfluidic systems play a pivotal role in personalized medicine, particularly in in vitro diagnostics tools and disease modeling. These systems offer unprecedented precision and versatility, enabling the creation of intricate three-dimensional (3D) tissue models that can closely emulate both physiological and pathophysiological conditions. By leveraging innovative biomaterials and bioinks, soft microfluidic systems can circumvent the current limitations involving the use of polydimethylsiloxane (PDMS), thus facilitating the development of customizable systems capable of sustaining the functions of encapsulated cells and mimicking complex biological microenvironments.

View Article and Find Full Text PDF

A Systematic Review of Research on Guided Access Cavity Preparation Endodontic Treatment: Dentin Preservation Perspectives.

Clin Cosmet Investig Dent

January 2025

Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, West Java, Indonesia.

Purpose: Guided access cavity preparation (GACP) is an endodontic procedure utilizing stents, guide sleeves, or dynamic guides to facilitate the proper formation of access cavities. This paper aims to evaluate the significance of research on guided access cavity preparation in endodontic treatment concerning dentin preservation. In the context of dentin preservation, this paper provides a thorough scoping review of a variety of methodologies for evaluating the accuracy of guided access cavity preparation.

View Article and Find Full Text PDF

Tooth autotransplantation is widely used to replace congenitally missing teeth or teeth with irreversible damage. This case report presents a personalized ultrasonic osteotome that enables precise preparation, minimizes bone trauma, enhances the initial stability of the transplanted tooth, and contributes to a favorable prognosis. The procedure is as follows: a 25-year-old female patient presented with a porcelain-fused-to-metal crown on Tooth #19, which had detached due to severe decay, rendering the tooth unsalvageable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!