A bubble-based acoustofluidic filtration (BAF) microfluidic device, which employs cross-flow filtration (CFF) and acoustic streaming, separates cells with high efficiency for forensic analysis. Forensic samples are typically complex and contain a substantial number of squamous epithelial cells from the female vagina, which tend to have fouling problems during filtration due to their morphological and cell adhesion differences. To overcome this issue, the BAF device utilizes bubble oscillation by bulk acoustic wave (BAW) to generate acoustic streaming, which offers additional hydrodynamic forces for side flushing cleaning and achieves effective removal within a mere 0.5 seconds. Our device is tested with imbalanced cell mixtures of sperm and epithelial cells with large disparity ratios. By concurrently employing CFF and acoustic streaming, the samples with our sperm-enrichment can achieve 91.72-97.78% for the recovery rate and 74.58-89.26% for the purity in the sperm enrichment. They are further subjected to short tandem repeat (STR) profiling, enabling the identification of perpetrators. Notably, even samples with minimal sperm cells demonstrated a significant increase in the male donor DNA ratio, while the peak heights of female alleles became virtually undetectable. The exceptional cell separation capability demonstrated by our BAF device highlights its potential applications in forensic sciences and other areas of cell biology.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3lc00632hDOI Listing

Publication Analysis

Top Keywords

acoustic streaming
12
high efficiency
8
sperm enrichment
8
short tandem
8
tandem repeat
8
repeat str
8
cff acoustic
8
epithelial cells
8
baf device
8
acoustic
5

Similar Publications

Introduction: In stressful times, people often listen to "coping songs" that help them reach emotional well-being goals. This paper is a first attempt to map the connection between an individual's well-being goals and their chosen coping song.

Methods: We assembled a large-scale dataset of 2,804 coping songs chosen by individuals from 11 countries during COVID-19 lockdown.

View Article and Find Full Text PDF

The transport of drugs into tumor cells near the center of the tumor is known to be severely hindered due to the high interstitial pressure and poor vascularization. The aim of this work is to investigate the possibility to induce acoustic streaming in a tumor. Two tumor cases (breast and abdomen) are simulated to find the acoustic streaming and temperature rise, while varying the focused ultrasound transducer radius, frequency, and power for a constant duty cycle (1%).

View Article and Find Full Text PDF

Background And Objectives: Acoustofluidic manipulation of particles and biological cells has been widely applied in various biomedical and engineering applications, including effective separation of cancer cell, point-of-care diagnosis, and cell patterning for tissue engineering. It is often implemented within a polydimethylsiloxane (PDMS) microchannel, where standing surface acoustic waves (SSAW) are generated by sending two counter-propagating ultrasonic waves on a piezoelectric substrate.

Methods: In this paper, we develop a full cross-sectional model of the acoustofluidic device using finite element method, simulating the wave excitation on the substrate and wave propagation in both the fluid and the microchannel wall.

View Article and Find Full Text PDF

Pulse Ultrasound-Based Response Enhancement of a MOX Gas Sensor.

ACS Sens

December 2024

State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

In this work, a new method to enhance the sensing response of an ultrasonically catalyzed metal oxide gas sensor has been proposed and developed, in which pulse ultrasound is employed to enhance the redox reaction at the sensing surface. It is experimentally confirmed that with a proper pulse width, the negative effect of acoustic streaming on the ultrasonic enhancement process can be effectively suppressed. Comparing the steady responses of five target gases under the pulse and continuous ultrasound, respectively, it is found that the pulse ultrasound causes a better catalysis effect, and response enhancement (RE) by the pulse ultrasound with an optimal pulse width depends on the ultrasonic strength as well as the species and concentration of the target gas.

View Article and Find Full Text PDF

Remotely extinguishing flames through transient acoustic streaming using time reversal focusing of sound.

Sci Rep

December 2024

Acoustics Research Group, Department of Physics and Astronomy, Brigham Young University, Provo, 84602, USA.

Acoustic waves are a possible reusable method to extinguish flames. Previous studies have placed the sound source near the flame or have used standing waves to reach large enough acoustic amplitudes to extinguish it. In this study, a new method is explored: using time reversal in a room to focus transient acoustic waves to the flame to extinguish it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!