The basolateral amygdala (BLA) is an evolutionarily conserved brain region, well known for valence processing. Despite this central role, the relationship between activity of BLA neuronal ensembles in response to appetitive and aversive stimuli and the subsequent expression of valence-specific behavior has remained elusive. Here, we leverage two-photon calcium imaging combined with single-cell holographic photostimulation through an endoscopic lens to demonstrate a direct causal role for opposing ensembles of BLA neurons in the control of oppositely valenced behavior in mice. We report that targeted photostimulation of either appetitive or aversive BLA ensembles results in mutual inhibition and shifts behavioral responses to promote consumption of an aversive tastant or reduce consumption of an appetitive tastant, respectively. Here, we identify that neuronal encoding of valence in the BLA is graded and relies on the relative proportion of individual BLA neurons recruited in a stable appetitive or quinine ensemble.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984369 | PMC |
http://dx.doi.org/10.1016/j.neuron.2023.11.007 | DOI Listing |
Cell Rep
January 2025
School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA. Electronic address:
Words represent a uniquely human information channel-humans use words to express thoughts and feelings and to assign emotional valence to experience. Work from model organisms suggests that valence assignments are carried out in part by the neuromodulators dopamine, serotonin, and norepinephrine. Here, we ask whether valence signaling by these neuromodulators extends to word semantics in humans by measuring sub-second neuromodulator dynamics in the thalamus (N = 13) and anterior cingulate cortex (N = 6) of individuals evaluating positive, negative, and neutrally valenced words.
View Article and Find Full Text PDFThe current state of mental health treatment for individuals diagnosed with major depressive disorder leaves billions of individuals with first-line therapies that are ineffective or burdened with undesirable side effects. One major obstacle is that distinct pathologies may currently be diagnosed as the same disease and prescribed the same treatments. The key to developing antidepressants with ubiquitous efficacy is to first identify a strategy to differentiate between heterogeneous conditions.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR.
In dynamic environments where stimuli predicting rewarding or aversive outcomes unexpectedly change, it is critical to flexibly update behavior while preserving recollection of previous associations. Dopamine and GABA neurons in the ventral tegmental area (VTA) are implicated in reward and punishment learning, yet little is known about how each population adapts when the predicted outcome valence changes. We measured VTA dopamine and GABA population activity while male and female rats learned to associate three discrete auditory cues to three distinct outcomes: reward, punishment, or no outcome within the same session.
View Article and Find Full Text PDFCold Spring Harb Protoc
October 2024
Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, United Kingdom
Memory has been extensively studied in since the early 1970s. Straightforward aversive and appetitive conditioning paradigms train populations of flies to associate the pairing of one of two odors with either punishment or reward. After training, the flies show either preferential avoidance or approach behavior, to the appropriate odor, when given a choice between the two odors in a simple T-maze apparatus.
View Article and Find Full Text PDFNat Commun
August 2024
Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany.
The basolateral amygdala (BLA) contains discrete neuronal circuits that integrate positive or negative emotional information and drive the appropriate innate and learned behaviors. Whether these circuits consist of genetically-identifiable and anatomically segregated neuron types, is poorly understood. Also, our understanding of the response patterns and behavioral spectra of genetically-identifiable BLA neurons is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!