A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficient carbamazepine degradation by modified copper tailings and PMS system: Performance evaluation and mechanism. | LitMetric

Efficient carbamazepine degradation by modified copper tailings and PMS system: Performance evaluation and mechanism.

J Hazard Mater

School of Resource and Environmental Sciences, Wuhan University, 430072, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China. Electronic address:

Published: March 2024

It is a green and sustainable path to establish cheap solid waste-based catalyst to establish peroxymonosulfate (PMS) catalytic system for the degradation of carbamazepine (CBZ) in water. In this study, durable copper tailing waste residue-based catalyst (CSWR) was prepared, and efficient CSWR/PMS system was constructed for catalytic degradation of CBZ for first time. The morphology and structure of CSWR changed from clumps to porous and loose amorphous by alkali leaching and medium temperature calcination. The reconstructed surface of the CSWR exposes more active sites promotes the catalytic reaction and increases the degradation rate of CBZ by more than 39.8 times. And the CSWR/PMS achieved a CBZ removal of nearly 99.99 % in 20 min. In particular, perovskite-type iron-calcium compounds were formed, which stimulated the production of more HO and SO in the system. DFT calculation shows that CSWR has stronger adsorption energy and electron transfer ability to PMS molecules, which improved the degradation efficiency of the system. In general, this study proposed a means of high-value waste utilization, which provided a new idea for the preparation of solid waste based environmental functional materials and is expected to be widely used in practical wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.133198DOI Listing

Publication Analysis

Top Keywords

degradation
5
system
5
efficient carbamazepine
4
carbamazepine degradation
4
degradation modified
4
modified copper
4
copper tailings
4
tailings pms
4
pms system
4
system performance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!