Transactive response DNA-binding protein 43 (TDP-43) pathology is categorized as type A-E in frontotemporal lobar degeneration and as type α-β in Alzheimer disease (AD) based on inclusion type. We screened amygdala slides of 131 cases with varying ages at death, clinical/neuroimaging findings, and AD neuropathologic changes for TDP-43 pathology using anti-phospho-TDP-43 antibodies. Seven cases (5%) only showed atypical TDP-43 inclusions that could not be typed. Immunohistochemistry and immunofluorescence assessed the atypical star-shaped TDP-43 pathology including its distribution, species, cellular localization, and colocalization with tau. All 7 had died at an extremely old age (median: 100 years [IQR: 94-101]) from nonneurological causes and none had dementia (4 cognitively unimpaired, 3 with amnestic mild cognitive impairment). Neuroimaging showed mild medial temporal involvement. Pathologically, the star-shaped TDP-43-positive inclusions were found in medial (subpial) amygdala and, occasionally, in basolateral regions. Hippocampus only showed TDP-43-positive neurites in the fimbria and subiculum while the frontal lobe was free of TDP-43 inclusions. The star-shaped inclusions were better detected with antibodies against N-terminal than C-terminal TDP-43. Double-labeling studies confirmed deposition of TDP-43 within astrocytes and colocalization with tau. We have identified a novel TDP-43 pathology with star-shaped morphology associated with superaging, with a homogeneous clinicopathologic picture, possibly representing a novel, true aging-related TDP-43 pathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746697 | PMC |
http://dx.doi.org/10.1093/jnen/nlad105 | DOI Listing |
Acta Neuropathol Commun
December 2024
Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China.
TAR DNA-binding protein 43 (TDP-43) has emerged as a critical player in neurodegenerative disorders, with its dysfunction implicated in a wide spectrum of diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer's disease (AD). This comprehensive review explores the multifaceted roles of TDP-43 in both physiological and pathological contexts. We delve into TDP-43's crucial functions in RNA metabolism, including splicing regulation, mRNA stability, and miRNA biogenesis.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
December 2024
Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
Although Alzheimer disease neuropathologic change (ADNC) is the most common pathology underlying clinical dementia, the presence of multiple comorbid neuropathologies is increasingly being recognized as a major contributor to the worldwide dementia burden. We analyzed 1051 subjects with specific combinations of isolated and mixed pathologies and conducted multivariate logistic regression analysis on a cohort of 4624 cases with mixed pathologies to systematically explore the independent cognitive contributions of each pathology. Alzheimer disease neuropathologic change and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) were both associated with a primary clinical diagnosis of Alzheimer disease (AD) and were characterized by an amnestic dementia phenotype, while only ADNC associated with logopenic variant primary progressive aphasia (PPA).
View Article and Find Full Text PDFActa Neuropathol Commun
December 2024
Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA.
The GC hexanucleotide repeat expansion in C9ORF72 is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 GC hexanucleotide repeats.
View Article and Find Full Text PDFThe GC hexanucleotide repeat expansion in the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 GC hexanucleotide repeats.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
Introduction: Limited research has extensively analyzed neurodegenerative disease-related protein deposition patterns in the hippocampus.
Methods: This study examined the distribution of proteins in hippocampal subregions across major neurodegenerative diseases and explored their relation to each other. The area density of phosphorylated tau (p-tau), amyloid beta (Aβ), α-synuclein, and phosphorylated TDP-43 protein deposits together with pyramidal cell density in each hippocampal subregion, including CA1-4, prosubiculum (ProS), and subiculum was assessed in 166 cases encompassing various neurodegenerative diseases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!